

AFRL-IF-RS-TR-2002-314

Final Technical Report
December 2002

MODELING ABSTRACTION AND SIMULATION
TECHNIQUES

University of Massachusetts

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-314 has been reviewed and is approved for publication.

APPROVED:
 TIMOTHY E. BUSCH
 Project Engineer

 FOR THE DIRECTOR:

 JAMES W. CUSACK, Chief
 Information Systems Division
 Information Directorate

 Form Approved REPORT DOCUMENTATION PAGE OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 DECEMBER 2002

3. REPORT TYPE AND DATES COVERED
Final Jun 99 – Apr 02

4. TITLE AND SUBTITLE
MODELING ABSTRACTION AND SIMULATION TECHNIQUES

6. AUTHOR(S)
Christos G. Cassandras and Wei-Bo Gong

5. FUNDING NUMBERS
C - F30602-C-99-0056/0057
PE - 62702F
PR - 459S/459S
TA - BA/BA
WU - 94/91

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Massachusetts (0056) Trustees of the Boston University(0057)
Office of Grant & Contract Administration 881 Commonwealth Avenue
408 Goodell Building, Box 33285 Boston MA 02215
Boston MA 02215

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFSB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-314

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Timothy E. Busch/IFSB/(315) 330-1486/ Timothy.Busch@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This final report contains the joint work of both University of Massachusetts and Boston University who were each
funded under separate contracts. The objective of this effort has been to develop and study three novel complementary
directions that may be summarized as follows:
1. Extract information from the inherently slow simulation process of complex systems by exploiting new concurrent
simulation techniques.
2. Exploit the hierarchical structure in multi-resolution models by decomposing them in ways which preserve statistical
fidelity.
3. Explore the use of neural networks as complex simulation metamodels. The scope of the project has been to develop
specific methodologies and algorithms based on the proposed new techniques that were developed and tested. In many
cases, The benchmark problems studied are the same or extensions of the ones developed during our previous projects
"Enabling Technologies for Real-Time Simulation' and "Real-Time Simulation Technologies for Complex Systems.

15. NUMBER OF PAGES
164

14. SUBJECT TERMS
Metamodeling, Model Abstraction Techniques, Concurrent Simulation

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Contents

1 INTRODUCTION 1

1.1 Issues in Modeling and Simulation of Complex Systems 1

1.2 Organization . 4

2 MODEL ABSTRACTION USING FLUID MODELS 6

2.1 Introduction . 6

2.2 Impact of Autocorrelation . 7

2.2.1 TSS for an M/D/1 Queue . 7

2.2.2 Fluid Queue . 9

2.3 Short-term and Long-term Traffic Characteristics 12

2.3.1 Theoretical Explanation . 12

2.3.2 Experiments . 15

2.3.3 Compensation . 18

2.4 Summary . 21

3 CONCURRENT SIMULATION 23

3.1 Introduction . 23

3.2 The Stochastic Fluid Model (SFM) Setting 25

3.3 Infinitesimal Perturbation Analysis (IPA) with respect to Buffer Size or
Threshold . 27

i

3.3.1 Infinitesimal Perturbation Analysis 29

3.3.2 IPA Estimation Algorithm . 30

3.4 Conclusions and Future Work . 31

4 NEURAL NETWORK METAMODELING 32

4.1 Introduction . 32

4.2 Notation . 34

4.3 Backpropagation Neural Net . 35

4.4 Derivative Backpropagation Neural Networks 36

4.5 Numerical Results . 38

4.6 Summary . 40

5 HIERARCHICAL DECOMPOSITIONS AND THE CLUSTERING AP-
PROACH 42

5.1 Introduction . 42

5.1.1 Design of the Interface . 44

5.1.2 Clustering Tools . 45

5.2 Hidden Markov Model as a Clustering Tool 46

5.2.1 Experimental Design . 47

5.2.2 Experiments Results . 49

5.3 Application of Clustering in Computer Security 50

5.3.1 Motivation . 50

5.3.2 Hierarchy in Computer Security Systems 50

5.3.3 Characterizing the Hierarchical Structure 53

5.3.4 Related Work . 55

5.4 Experiments on HMM for Anomaly Detection 55

5.4.1 Applications of HMM in Computer Security 55

5.4.2 Model Construction . 56

5.4.3 Model Training . 57

5.4.4 Calculating Similarity Measure . 57

ii

5.4.5 Discussion . 58

5.5 Summary . 59

6 OPTIMIZATION EXAMPLES 60

6.1 Optimal Buffer Control Using SFM-Based IPA Estimators 60

6.2 Multi-commodity Resource Allocation . 63

6.2.1 Basic Approach for the “Surrogate” Method 63

6.2.2 Optimization Algorithm . 65

6.2.3 Multicommodity Resource Allocation Problems 66

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 70

A PROOFS 73

A.1 Proof of (2.3) . 73

A.2 Proof of (2.12) . 74

B Perturbation Analysis for On-Line Control and Optimization of Stochastic
Fluid Models 75

B.1 Introduction . 76

B.2 A Motivating Example: Threshold-Based Buffer Control 78

B.3 The Stochastic Fluid Model (SFM) Setting 81

B.4 Infinitesimal Perturbation Analysis (IPA) with respect to Buffer Size or
Threshold . 83

B.4.1 IPA Using Finite Difference Analysis 85

B.4.2 IPA Using Sample Derivatives . 90

B.5 Optimal Buffer Control Using SFM-Based IPA Estimators 95

B.6 Conclusions and Future Work . 98

C Clustering Methods for Multi-Resolution Simulation Modeling 103

C.1 Introduction . 104

C.2 Interface between high- and low-resolution models 106

C.3 Losing statistical fidelity: an example . 108

goodelle
iii

C.3.1 Simulation Results . 109

C.4 Clustering using Adaptive Resonance Theory (ART) 111

C.5 An application to a “real-world” complex system 113

C.5.1 ART Enhancements . 113

C.6 Using Hidden Markov Model for Sample Path Clustering 115

C.7 Conclusion . 118

D A Generalized ‘Surrogate Problem’ Methodology for On-Line Stochastic
Discrete Optimization 119

D.1 Basic approach for on-line control . 122

D.2 Continuous-to-discrete state transformations 124

D.3 Construction of surrogate cost functions and their gradients 132

D.3.1 Gradient evaluation . 133

D.3.2 Projection Mapping . 136

D.3.3 Separable cost functions . 137

D.4 Recovery of optimal discrete states . 138

D.5 Optimization Algorithm . 140

D.6 Numerical Examples and Applications . 142

D.6.1 Multicommodity Resource Allocation Problems 144

D.7 Conclusions . 146

BIBLIOGRAPHY

goodelle

goodelle
iv

goodelle

goodelle
 148

List of Figures

2.1 TSS and PLS in a queue (h denotes the time-step length). 7

2.2 Absolute and relative simulation errors in mean system time for M/D/1. . 9

2.3 (a) Autocovariance coefficient curves of fluid processes. (b) Relative simula-
tion errors in mean system time of fluid processes (h = 50). 10

2.4 (a) A busy train. (b) A fully busy queueing block. 13

2.5 A busy train with initial discrepancy between TSS and PLS. 13

2.6 TSS poorly captures queueing dynamics. 15

2.7 Peeling operation on HOMPP models. 16

2.8 (a) HOMPP traffic autocovariance coefficient curves. (b) Marginal distribu-
tion of H1 and derived traffic (time step 25s). 17

2.9 (a) Simulation errors of H1 and derived traffic (time step 25s). (b) Simula-
tion errors of H2 and derived traffic (time step 5s). 17

2.10 Simulation errors of H2EXT and its derived traffic (time step 5s). 19

2.11 (a) H2S compensation results (time step 5s). (b) H2 compensation results
(time step 5s). 20

2.12 (a) Local queueing curve of H2EXT (time step 5s). (b) Compensation
results of H2EXT (time step 5s). 20

3.1 Concurrent Simulation Principle. 24

3.2 The basic Stochastic Fluid Model (SFM) . 25

3.3 A typical sample path of a SFM . 28

4.1 3-Layer neural network . 34

4.2 Approximation of the function y = x2 using NNs 38

4.3 Area under the absolute error of the NN approximations for y = x2 39

v

4.4 Approximation of the average system time in an M/M/1 queueing system . 40

4.5 Area under the absolute error of the NN approximations for the average
system time in an M/M/1 System . 41

5.1 Decomposition of complex systems . 43

5.2 Hierarchical model interface: passing a simple average to the lower resolution
model . 44

5.3 Hierarchical model interface: passing several averages to the lower resolution
model, one for each cluster . 45

5.4 The hierarchical structure of computer security models 51

6.1 Optimal threshold determination in an actual system using SFM-based gra-
dient estimators - Scenarios 1-6 . 62

6.2 A typical reward function Ji(ri,1, ri,2). 67

6.3 Algorithm convergence under different initial points. 69

B.1 Buffer control in a single node . 79

B.2 Cost v. threshold comparison for DES and SFM 80

B.3 The basic Stochastic Fluid Model (SFM) . 81

B.4 A typical sample path of a SFM . 85

B.5 (a) Case I: No perturbation generation (yi+1(θ) ≤ θ). (b) Case II: Perturba-
tion generation for 0 < ∆θ ≤ yi+1(θ)− θ . 87

B.6 Optimal threshold determination in an actual system using SFM-based gra-
dient estimators - Scenarios 1-6 . 99

B.7 Case 1.1: yi+1(θ) ≥ 0 . 100

B.8 (a) Case 1.2: yi+1(θ) < 0 and yi+1(θ)+∆yi+1 ≤ 0. (b) Case 1.3: yi+1(θ) < 0
and yi+1(θ) + ∆yi+1 > 0 . 100

B.9 (a) Cases 2.1-2.2: yi+1(θ) ≤ θ. (b) Case 2.3: yi+1(θ) > θ 101

C.1 Decomposition of complex systems . 104

C.2 Hierarchical model interface: passing a simple average to the lower resolution
model . 107

C.3 Hierarchical model interface: passing several averages to the lower resolution
model, one for each cluster . 107

vi

C.4 Operation Scheduling . 108

C.5 ARMS Model . 109

C.6 Completion time of the first A = 100 aircraft 110

C.7 Similarity in ART is measured by the angle 112

C.8 200 2-dim. vectors, no extra dimension, ρ = 0.99 114

C.9 Same 200 2-dim. vectors, WITH extra dimension, ρ = 0.99 114

C.10 Same 200 2-dim. vectors, WITH extra dim. reclustered within each of the 3
original clusters, ρ = 0.99 . 115

D.1 A typical reward function Ji(ri,1, ri,2) . 146

D.2 Algorithm convergence under different initial points 147

vii

goodelle
Bibliography

List of Tables

2.1 Relative simulation errors for M/D/1 (h = 5). 9

2.2 Statistical errors in input fluid processes brought by coarse simulation (h = 10) 12

2.3 Parameters of three HOMPP sources. 17

5.1 Similarity measure between HMMs corresponding to each of the 9 sample
paths . 49

6.1 Parameter settings for six examples . 62

B.1 Parameter settings for six examples . 98

C.1 Similarity measure among the HMMs corresponding to each of the 9 sample
paths. 118

D.1 Optimal Resource Allocation . 143

D.2 Optimal Kanban Allocation . 144

goodelle
viii

Chapter 1

INTRODUCTION

This report summarizes the work we have performed for the project entitled “Modeling
Abstraction and Simulation Techniques.” The objective of this effort has been to develop
and study three novel complementary directions that may be summarized as follows:

1. Extract additional information from the inherently slow simulation process of complex
systems by exploiting new concurrent simulation techniques.

2. Exploit the hierarchical structure in multi-resolution simulation models by decompos-
ing them in ways which preserve statistical fidelity.

3. Explore the use of neural networks as complex simulation metamodels.

The scope of the project has been to develop specific methodologies and algorithms and
test them on benchmark problems in C4I application areas. Thus, appropriate simulation
models were built, and algorithms based on the proposed new techniques were developed
and tested. In many cases, the benchmark problems studied are the same or extensions
of the ones developed during our previous projects “Enabling Technologies for Real-Time
Simulation” [12] and “Real-Time Simulation Technologies for Complex Systems” [13].

We begin by briefly outlining some of the major challenges faced by modeling and
simulation techniques for complex systems and the approaches we are following to address
these challenges (Section 1.1). We then describe the organization of this report (Section
1.2).

1.1 Issues in Modeling and Simulation of Complex Systems

Simulation is widely recognized as one of the most versatile and general-purpose tools
available today for modeling complex processes and systems and for solving problems in
design, performance evaluation, decision making, and planning. In the C4I environment, in

1

particular, most situations that confront analysts and decision makers are of such complexity
that handling them far surpasses the scope of available analytical and numerical methods;
this leaves simulation as the only alternative of “universal” applicability. Unfortunately,
there are several factors that limit the use of simulation.

1. For most situations of practical interest, simulation is extremely time-consuming.

2. In order to evaluate different alternatives, one has to perform a large number of
simulations (one for each alternative). Furthermore, combining and processing the
resulting data in a way which enhances decision making capability is a difficult task.

Since simulation is so time consuming, it is usually viewed as an off-line tool: one has to
wait for the completion of one or more simulation runs before deciding how to interpret the
results and how to proceed next. Our objective in this project is to transform simulation
into a much more interactive tool not only for “evaluation” of alternatives, but also for
efficient real-time “optimization” over alternatives. It is also desirable to utilize simulation
as a means towards obtaining much simpler, yet accurate, surrogate models of the complex
process or system of interest; this is also referred to as metamodeling.

To achieve the objectives outlined above, during this project we have pursued the fol-
lowing complementary directions

1. Model abstraction using fluid simulation: As already mentioned, Discrete-Event
Simulation is time consuming and impractical due to the large number of events
that are usually involved. An alternative abstract modeling paradigm is based on
Fluid Models (FM). The fluid-flow worldview can provide either approximations to
complex discrete-event models or primary models in their own right. Furthermore,
fluid models can be combined with discrete-event models to develop a class of hybrid-
systems, where, the state of the system is described by discrete as well as continuous
type variables and the system dynamics are both, time-driven and event-driven. Such
hybrid models can be used to model a fairly broad class of systems including battle
engagements, communication networks, manufacturing systems and many more.

The justification of FM rests on the realization that some events are more important
than others. In effect, fluid models aggregate several events into a single event making
simulation significantly more efficient. For example, in the context of high speed
communication networks, the effect of an individual packet or cell on the entire traffic
process is virtually infinitesimal, not unlike the effect of a water molecule on the water
flow in a river. To appreciate the effectiveness of FM, consider for example a discrete
event simulation run of an ATM link operating at 622 Megabits-per-second which
requires the processing of over a million events per second. On the other hand, if
traffic comes from the source at rates that are piecewise-constant functions of time,
then a simulation run would process only one event per rate change. Thus, 30 rate
changes per second (as in certain video encoders) may require the processing of only
30 events per second.

2

When using abstraction techniques (like the fluid models) it is important to determine
the right resolution (level of abstraction), i.e., the number of events that are aggre-
gated and treated as a single event. High resolution models (detailed simulation) are
impractical. On the other hand, very low resolution implies significant approximation
errors. In this report, we analyze the tradeoff between the fidelity of the simulation
results and the resolution level of fluid simulation.

2. Control and optimization using fluid simulation: In a complementary direction,
even in cases where the accuracy of a fluid model is not very high, the model might
still be usable for the purpose of control and optimization rather than performance
analysis. In this case, it is not unreasonable to expect that one can identify the solution
of an optimization problem based on a model which captures only those features of
the underlying “real” system that are needed to lead to the right solution, but not
necessarily estimate the corresponding optimal performance with accuracy. Even if
the exact solution cannot be obtained by such “lower-resolution” models, one can still
obtain near-optimal points that exhibit robustness properties with respect to certain
aspects of the model they are based on. Such observations have been made in several
contexts (e.g., [63, 60, 17]).

3. Concurrent simulation: In simulation studies it is generally required to evaluate
the performance J(·) of the system under a set of parameters/scenarios {θ0, · · · , θN}
(where each θi is generally a vector quantity). The typical solution approach is to
repeatedly simulate the system under each parameter/scenario which requires at least
N +1 simulation runs. If a typical simulation requires T time units, then this process
requires a total of (N+1)T time units. In the context of concurrent simulation it is de-
sired to extract additional information from a single simulation run under a parameter
θ0 besides the measure J(θ0). One possibility is to obtain {J(θ0), · · · , J(θN)}. In this
case, it is also required that (N +1)T >> T +c where c is the required computational
overhead. Alternatively, one can obtain gradient information ∇J(θ) = [∂J

θ1
, · · · , ∂J

θn
]

which can be used together with stochastic optimization schemes [17] for optimization
or to expedite the training of a neural network metamodel (see Chapter 4).

4. Model abstraction using neural networks: In the context of simulation, the main
idea of metamodeling is to build a “surrogate” model of the system of interest which is
much simpler (yet accurate) to work with. This is essentially analogous to constructing
a function F (x), x = [x1, · · · , xN] from only a finite set of selected samples x1, · · · ,xM .
The problem, of course, is that the actual function we are trying to approximate with
F (x) is unknown. There are several approaches to metamodeling, many of which are
domain-specific (e.g., see [2, 29, 30]). The most common general approach is to try
and build a polynomial expression. This is often inadequate because if the shape of the
actual curve corresponding to F (x) includes sudden jumps and asymptotic behavior
(which is very often the case from experience), then polynomial fits to such curves are
known to be poor.

In our work we address what we view as two key challenges in the domain of meta-
modeling: (a) Maximizing the amount of information extracted from simulation so
as to enhance the accuracy of the metamodel constructed and (b) Obtaining a meta-

3

modeling device of “universal” applicability, i.e., one capable of generating functions
of virtually arbitrary complexity. The first challenge is addressed through the con-
current simulation approach discussed earlier. The second involves the use of neural
networks as surrogate models. Neural networks have been used successfully in many
areas of application (e.g., speech and pattern recognition) and have generated a great
deal of enthusiasm for the promise they bring (e.g., see [27, 83, 53]). The main idea
is to view a neural network as a device that acts as a “metamodel” and provides a
desired response curve in great generality; that is precisely its strength. We have used
several benchmark problems to date to compare neural networks to state-of-the-art
alternatives and have obtained extremely positive results [12, 39, 14, 66]. Here we
point out that the form of the additional information extracted through concurrent
simulation is also important. For example, it is not immediately obvious how gradient
information can be used in the metamodel development. This is investigated in [66]
and Chapter 4 of this report.

5. Hierarchical simulation and statistical fidelity: One way to reduce complexity
is through hierarchical decomposition of a simulation model. The challenge here is
to do it without sacrificing accuracy. By “accuracy” we mean that the statistical
information generated at the low-level, high-resolution simulation model should be
preserved accurately at the higher-level models. In focusing on the preservation of
the stochastic fidelity in hierarchical battle simulation models we have worked with
a concrete model [12, 13] and analyzed various approaches for the preservation of
stochastic fidelity. Our effort has been directed at developing an interface between
the two simulation levels to preserve the statistics to the maximum extent that the
available computing power allows. In our previous project [12] we initiated a study of
an approach based on clustering or path bundle grouping which is further pursued in
this project.

1.2 Organization

The content of this report is organized as follows.

Chapter 2: First we review the basic fluid simulation (FS) modeling framework and its
variants: time stepped simulation (TSS), time driven fluid simulation (TDFS), and
time stepped hybrid simulation (TSHS). Subsequently we investigate the “accuracy”
of the fluid simulation models mainly by studying the errors generated by ignoring
the detailed dynamics at small time scales. Through multiple simulation studies we
demonstrate how the resolution affects the error of the abstract fluid model.

Chapter 3: We present the general framework of concurrent simulation. Subsequently,
we adopt the stochastic fluid modeling (SFM) framework (a simple variant of the FS
framework presented above) and based on it we derive sample derivative estimates of
the performance measures of interest. Furthermore, these derivatives are very easy
to evaluate and we show that they are unbiased and nonparametric, i.e., they do not

4

depend on the stochastic processes that drive the system dynamics. Finally, we show
that these derivatives can be evaluated directly from the sample path of the discrete
event system. In other words, it is not necessary that we revert to a fluid simulation
model, rather we can extract the sensitivity information directly from the discrete
event simulator.

Chapter 4: We review the main concepts involved in using neural networks as universal
function approximators. Training neural networks typically requires a large number
of training points and since these points are obtained from simulation, the training
process is very time-consuming. To speed up the data collection one can use concurrent
simulation. It is straightforward to use additional information that is in the form
of the system’s output under different input parameters. On the other hand, it is
not obvious how sensitivity information generated by concurrent simulation can be
used. We investigate the use of sensitivity information to reduce the simulation effort
required for training a NN metamodel.

Chapter 5: In this chapter, we discuss the applications of clustering methods in hier-
archical simulation of complex systems and in system modelling. In the first part,
we discuss the basic concepts for multi-resolution simulation modelling of complex
stochastic systems. We argue that high-resolution output data should be classified
into groups that match underlying patterns or features of the system behavior before
sending group averages to the low-resolution modules to maintain the statistical fi-
delity. We propose high-dimensional data clustering as a key interfacing component
between simulation modules with different resolutions and use unsupervised learn-
ing schemes to recover the patterns for the high-resolution simulation results. In the
second part, we give the examples of using a Hidden Markov Model as an effective
clustering tool for this task. Subsequently, we apply the clustering approach to a
computer security problem (intrusion detection) and give examples of using Hidden
Markov Models for the purpose of system modelling for anomaly detection.

Chapter 6: In this chapter we investigate the use of sensitivity information (obtained
through concurrent estimation) together with stochastic approximation schemes for
“real-time” optimization purposes. Our examples are derived from the areas of com-
puter networks and mission planning in the context of Joint Air Operations (JAO).

Chapter 7: We present the main conclusions of our study, including lessons learned and
recommendations. We also outline our ongoing work and some future research direc-
tions.

5

Chapter 2

MODEL ABSTRACTION USING
FLUID MODELS

Modelling and performance evaluation are crucial the design, development and management
of complex systems (e.g., computer networks). Conventional analytical methods usually rely
on overly simplified assumptions while discrete event simulation (DES) is computationally
prohibitive (requires long simulation runs). Thus the scalability of evaluation tools has been
the focus of many studies and is also the topic of this chapter where we are motivated by
problems in traffic engineering [5] as they apply in computer networks.

2.1 Introduction

Several directions can be followed to improve model scalability. Parallel DES, such as
SSF [74] and PDns (parallel/distributed ns) [65], take advantage of the computational
power of multiprocessors or distributed computer networks. Another way is to raise the
abstraction level of modelling and simulation. For example, a fluid model only captures
traffic burstiness at a large timescale. The resulting fluid simulation (FS) [47] tracks the
fluid rate changes caused by sources and multiplexing at various nodes in the network.
As mentioned in the previous chapter, since the frequency of rate changes is typically
much lower than packet transmission rates, it is expected to achieve significant simulation
speedup. However, due to the well-known ripple effect [55], FS may become more expensive
than DES when evaluating large complex networks. Thus researchers use hybrid methods
to achieve the quick simulation goal. For example, Opnet simulator [46] combines analytical
techniques and DES.

In this chapter we study time-stepped-simulation (TSS), an abstract simulation scheme,
where the time axis is discretized into small fixed intervals called time steps. The stochastic
behavior of traffic within the time step is ignored and constant arrival rates are assumed.
The simulation proceeds in a time-driven fashion, updating the system state periodically.

6

queueing

in buffer

input
traffic

t tt+h t+2h t+3h t+h t+2h t+3h

TSS PLS(packet−level−simulation)

Figure 2.1: TSS and PLS in a queue (h denotes the time-step length).

Fig. 2.1 illustrates how TSS and Packet-level-simulation (PLS) view source traffic and the
queueing evolution in the buffer.

TSS trades off accuracy for speedup, eliminates the FS ripple effects and is capable
of adjusting simulation granularity to various levels. Moreover, TSS can facilitate parallel
simulation due to its synchronization nature. Time driven fluid simulation (TDFS) [85]
and time stepped hybrid simulation (TSHS) [38] also belong to this category. In TDFS the
fluid rate during each interval is the average rate over that interval and queueing backlogs
are tracked in discrete time. In order to simulate packet-based protocols such as TCP, Guo
[38] proposes TSHS, where packets from the same session are assumed to be evenly spaced
within the time-step.

Accuracy is one of major issues of abstract simulation where errors are mainly due to
the following.

1. No packet inter-arrival variation within each time-step or flow state.

2. No discrete workload in fluid-type models.

3. Flow interference in multiplexors.

4. The procedure of extracting packet statistics (for example, inferring packet end-to-end
delays from FS).

Yan [85] and Guo [38] give error bounds of TSS. This chapter focuses on simulation accuracy
and mainly studies the error from ignoring traffic randomness at small timescales.

2.2 Impact of Autocorrelation

2.2.1 TSS for an M/D/1 Queue

Consider the simplest queueing system M/D/1. Assume that the service time of one packet
is d. If TSS chooses abstraction level h, the simulation proceeds in time intervals of length

7

h× d. Let xn be the number of packets in the system at the beginning of time step n and
an the number of arrivals during this interval. We have the following system equation

xn+1 = [xn + an − h]+. (2.1)

where [x]+ = max{0, x}. We introduce an auxiliary random variable yn

yn+1 = [yn − h]+ + an. (2.2)

Assuming that the system is stable, let x, y and a denote the stationary value of xn, yn and
an. We have

Ex = Ey −Ea. (2.3)

Appendix A gives the derivation of Equation (2.3). Y (z) and A(z) are the probability
generating functions (PGF) of y and a respectively. Equation (2.2) is the evolution equation
of a discrete-time multi-server single queue denoted by G/D/h [8]. For TSS of M/D/1, we
get

Ey = Y ′(z)|z=1 =
1

2(1− ρ)
− h

2
(1− ρ) +

h−1∑

i=1

(1− zi)−1, (2.4)

where ρ is the utilization of the system and zis are the (h− 1) poles of (2.5) with |zi| < 1.

zheρh(1−z) − 1 = 0. (2.5)

Combining (2.3) and (2.4), we obtain the average number of packets in the system for
abstraction level h.

Ex =
1

2(1− ρ)
− h

2
(1 + ρ) +

h−1∑

i=1

(1− zi)−1 . (2.6)

Let Eq denote the theoretical mean number of packets in an M/D/1 system.

Eq =
1

2(1− ρ)
− 1− ρ

2
. (2.7)

Then, the TSS absolute abstraction error (∆q(h, ρ)) for abstraction level h and utilization
ρ is given by:

∆q(h, ρ) = Eq − Ex =
h− 1

2
+

h + 1
2

ρ−
h−1∑

i=1

(1− zi)−1. (2.8)

Finally, we also define the relative error l (h, ρ) as

l(h, ρ) =
∆q(h, ρ)

Eq
=

h−1
2 + h+1

2 ρ−∑h−1
i=1 (1− zi)−1

1
2(1−ρ) − 1−ρ

2

, (2.9)

where all zi’s can be obtained using numerical techniques. The simulation errors are shown
in Fig. 2.2 and we make the following observations.

8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

ab
so

lu
te

 e
rr

or

utilization (p)

h=5
h=10
h=15
h=20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
la

tiv
e

er
ro

r

utilization (p)

h=5
h=10
h=15
h=20

Figure 2.2: Absolute and relative simulation errors in mean system time for M/D/1.

Table 2.1: Relative simulation errors for M/D/1 (h = 5).
ρ 0.60 0.65 0.75 0.80 0.85 0.90

Err 0.8112 0.7544 0.6089 0.5182 0.4138 0.2939

1. The simulation accuracy is strongly related to the system utilization. The absolute
error increases while the relative error decreases as utilization increases (see Fig. 2.2).
As utilization approaches 1, the relative error reduces to zero which implies that
low-resolution simulation works better for a heavily loaded system.

2. Low resolution is inaccurate but as utilization approaches the extremes, very low or
very high, the relative error difference among different resolutions is small.

3. The utilization of practical networks often stays in the range of [0.6 ∼ 0.9]. Table 2.1
gives the relative errors for this range. The simulation errors are big when the ab-
straction level h = 5. In the following, we will show that correlations in the source
traffic make TSS work better.

2.2.2 Fluid Queue

Next we investigate a single fluid queue with piecewise constant inflow rates. The finest time
scale of this flow is called frame. We first show experimentally that correlation in the source
traffic results in better simulation accuracy. Then we provide an analytical justification.

Experiments

Correlated fluid processes are generated in a two-step synthetic method: (a) a basic process
is cut into blocks containing B frames each, and (b) the blocks are randomly shuffled
while the frame order in every block remains unchanged. The resulting processes have the
same first order statistics as the basic one but different correlation. Fig. 2.3a shows the

9

0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame

Fluid
1

Fluid
2
 (B=200)

Fluid
3
 (B=40)

Fluid
4
 (B=20)

Fluid
5
 (B=1)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utilization

Fluid
1

Fluid
2
 (B=200)

Fluid
3
 (B=40)

Fluid
4
 (B=20)

Fluid
5
 (B=1)

a b

Figure 2.3: (a) Autocovariance coefficient curves of fluid processes. (b) Relative simulation
errors in mean system time of fluid processes (h = 50).

autocovariance coefficient curves of 5 fluid sources. Fluid1 is the basic one, which has the
strongest correlation within the longest range. Fluid5, generated by completely shuffling
Fluid1, is almost white noise. Each of these flows is used as an input to an infinite buffer
queue which is simulated under two abstraction levels h = 1 and h = 50 (h = 1 is the
simulation with the finest resolution). The two sets of simulation results are compared
in Fig. 2.3b which shows the relative error for each input process. Note that the higher
the inflow correlation, the smaller the approximation error while for Fluid5 (uncorrelated
traffic), the simulation accuracy is low even for high utilization system. This is consistent
with the observations in the M/D/1 system.

How Correlation Works

TSS uses traffic abstraction and feeds approximate inputs into queues. Intuitively, the
more an approximate input looks like the true input, the better the simulation accuracy.
So the impact of correlation on simulation performance is checked based on how correlation
contributes to the similarity of two input flows. Let xi, i = 1, 2, · · · , be a stationary process
that denotes the fluid rate of the ith frame and define the following parameters:

1. Ee2
k = E[(xk− Σh

i=1xi

h)2], k = 1,2, ...,h, is the mean square of the error of the kth frame
within each time step and h is the abstraction level. If Ee2

k is small, both the mean
and variance of the error are small because Ee2

k = V ar|ek| + (E|ek|)2. This variable
indicates how close the kth frames are in the original and approximate inflows.

2. F = 1
h

∑h
k=1 Ee2

k, is the total abstraction error that counts all frame errors in each
time step. F is a general denotation. Fun and Fre are particular denotations for
uncorrelated and correlated processes respectively.

10

It is easy to get

Ee2
k =

V arx

h2

h∑

j=1,j 6=k

h∑

i=1,i6=k

(
1 + ρ|i−j| − ρ|k−i| − ρ|k−j|

)
. (2.10)

where ρ and V arx are the autocovariance coefficients and the variance respectively. Uncor-
related processes have the following autocovariance coefficients

ρn =
{

1, n = 0
0, n 6= 0 .

(2.11)

and therefore, (2.10) reduces to

Ee2
k = V arx

(
1− 1

h

)
.

Then

Fun = V arx

(
1− 1

h

)
.

Appendix A derives the abstraction error for a correlated process.

Fre = Fun − C . (2.12)

where

C = 2
V arx

h2

h−1∑

i=1

(h− i)ρi . (2.13)

Discussion:

1. Combining Eqs. (2.13) and (2.12) we see that the abstraction error of the correlated
process is smaller than that of the corresponding uncorrelated process if the two inputs
have the same first order statistics. Also, the larger C is, the smaller the abstraction
error and so the better the simulation accuracy.

2. According to Eq. (2.13), autocovariance coefficients in the shorter range are given
larger weights. Better simulation performance is expected for fluid traffic with stronger
correlations in short range. We conjecture that TSS with abstraction level h well sim-
ulates a single fluid queue if its input has strong correlation up to h frames. Table 2.2
gives the errors of the 5 fluid processes mentioned in Sect. 2.2.2. It shows that ab-
straction error increases as correlation decreases.

3. The variance of the rate of the fluid process also affects the simulation performance
as seen in Eq. (2.13), where C is proportional to this variance.

It is more suitable to describe the traffic of computer networks by point processes. The
impact of autocorrelation is also confirmed by experiments where more general queueing
systems with point processes are investigated. Please refer to [84] for details.

11

Table 2.2: Statistical errors in input fluid processes brought by coarse simulation (h = 10)
Processes Approximated Fluid1 Fluid2 Fluid3 Fluid4 Fluid5

E|e| (Experimental) 0.2988 0.2988 0.5858 0.7669 1.0733
F (Experimental) 0.4102 0.4102 0.8103 1.0661 1.5139

F (Analytical) 0.4105 0.4900 0.8207 1.0874 1.5137

2.3 Short-term and Long-term Traffic Characteristics

The previous section observes the impact of traffic correlation on the accuracy of time step
simulation. This section uses sample path analysis to justify the impact of correlation and
discusses the impact of burstiness at different levels.

2.3.1 Theoretical Explanation

Consider a single-server queue with a constant service rate, where the buffer is assumed
infinite unless other specified. Cut the queueing sample path into blocks of length h. Each
queueing block contains packet arrival information, the service rate and the initial backlog.
Fig. 2.1 shows some queueing blocks. Nonempty queueing blocks are classified into two
categories. (a) Fully busy blocks where the buffer is never empty during the block and, (b)
partially busy blocks where the buffer is empty for some time. A busy train is a succession
of fully busy blocks. Also, define the following parameters for a busy train of n time steps.

• µ: constant service rate

• ti = ih, i ∈ {0, 1, · · · , n}
• QiF : average queue length during [ti−1, ti) in fine-time-scale simulation.

• QiT : average queue length during [ti−1, ti) in time-step simulation.

• ai(t): rate function during [ti−1, ti)

• āi: average rate during [ti−1, ti)

• QBF : average queue length during the busy period [0, nh] in fine-time-scale simulation.

• QBT : average queue length during the busy period [0, nh] in time-step simulation.

First we assume that TSS has the same initial backlog as the fine-time-scale simulation as
shown in Fig. 2.4a. A fully busy block is shown in Fig. 2.4b where the solid line demonstrates
the fluctuation of the buffered workload in fine-scale simulation. Also, define

• QAF : Queueing area in fine-time-scale simulation

• QAT : Queueing area in time-step simulation

12

t t t+h
a b

Figure 2.4: (a) A busy train. (b) A fully busy queueing block.

t

Figure 2.5: A busy train with initial discrepancy between TSS and PLS.

It is easy to get

QAF = QAT +
∫ h

0
tādt−

∫ h

0
ta(t)dt

= QAT −
∫ h

0
tb(t)dt

where b(t) = a(t)− ā is the rate difference function. Therefore,

QF = QT − 1
h

∫ h

0
tb(t)dt (2.14)

where, ∫ h

0
b(t)dt = 0, b(t) ≥ −ā

Then for a busy train,

QBF = QBT − 1
n

n∑

i=1

1
h

∫ h

0
tbi(t)dt (2.15)

where bi(t) is the rate difference function during [ti−1, ti].

13

If TSS does not have the same initial backlog as the fine-time-scale simulation (as in
Fig. 2.5), we have

QF = QT − 1
h

∫ h

0
tbi(t)dt + ∆ (2.16)

where ∆ ≤ µh is determined by the backlog difference at the time step before the busy
train.

Subsequently, we use queueing blocks as a comparison unit and define the simulation
error of queueing block i as

ei =
|QiF −QiT |

QiF
. (2.17)

Therefore, the simulation error for the whole trace with N nonempty blocks is

e =
1
N

N∑

i=1

ei (2.18)

Note that QiT of partially busy blocks is much smaller than QiF , thus ei ≈ 1. Let α denote
the ratio of the fully busy blocks among the total nonempty blocks. Then the simulation
error of the whole trace is expressed as

e ' (1− α)× 1 + α
1
h

∫ h
0 tb(t)dt + ∆

QF
(2.19)

Discussion:

1. The error in partially busy blocks is usually larger than that of fully busy blocks.
Long busy periods increase the percentage of fully busy blocks α and help to reduce
the total simulation error. A heavily loaded system has a large percentage of fully
busy blocks. Thus TSS works generally well for this kind of system. For the mildly or
lightly loaded systems, the performance of TSS depends on the traffic’s characteristics.
Under the same system utilization, long busy periods shows up only for some cases.

2. As Fig. 2.4 and Fig. 2.5 show, the large backlog during busy periods lessens the
impacts of local rate variation and initial backlog discrepancy. In a busy train of n
blocks where the initial backlog is assumed zero, QBT is decided by {āi, i = 1, · · · , n}

QBT =
h

n

n−1∑

i=1

[(n− i)āi]− h(n− 1)
2

µ (2.20)

n∑

i=1

āi = nµ (2.21)

āi ≥ 0 (2.22)

In (2.20), the weights given to āi decrease as i increases. Combining constraints
(2.21) and (2.22), it is induced that the higher arrival rates at the beginning of the
busy period and the lower rates at the end lead to larger QBT . Also, the larger the

14

 t

Figure 2.6: TSS poorly captures queueing dynamics.

rate difference between the two ends, the larger QBT is. At time scale h, if traffic is
characterized by the concentration of periods with much higher arrival rates and the
concentration of periods with very low arrival rate, it is easy to have large queueing
building-up which results in reasonable simulation accuracy.

So far we have showed that TSS abstraction errors are due to queueing nonlinearity and
rate variation during each time step. Thus, to reasonably evaluate a queueing process via
TSS, the queueing process is required to show (a) long busy periods thus, reduce queueing
nonlinearity, and (b) large queueing length during busy periods thus, reduce the impact of
local rate variation

A heavily-loaded system generally satisfies the above two requirements. For a mildly-
loaded system, acceptable accuracy requires that traffic shows long bursts with strong bursty
intensity. Otherwise, TSS can not reflect real queueing process as shown in Fig. 2.6.

2.3.2 Experiments

By looking into the sample path of queueing process, we identify the factors that influence
simulation accuracy and give analytical explanation. Here we show some experimental
results to confirm our analysis. In the following discussion, short-term refers to the dynamics
during a time step (how arrivals are spaced). Long-term refers to a time scale equal to or
larger than the time step. In this study, we are mainly interested in the first and second
order statistics of long-term traffic variability.

Traffic Model

We use a Hierarchical On-Off Modulated Poisson Process (HOMPP), which is based on the
Hierarchical On-Off Process (HOP) [61]. An n-level HOP Y (t) is defined as:

Y (t) =
n∏

1

Xi(t) (2.23)

15

Layer 1 On

Layer 1 On

Layer 2 On

a) Before peeling

b) After peeling Layer 2

t

t

2− layer HOMPP

Figure 2.7: Peeling operation on HOMPP models.

where each Xi(t) is an independent On-Off process. Y (t) is in the “on” state only if all
component processes are “on”. HOMPP is generated from HOP Y (t) by modulating a
Poisson process. In this study, the timescales of different layers are disparate and Layer n
works on the largest timescale. Any layer’s “on” periods are concentrated within the “on”
periods of its direct parent layer. This hierarchical model introduces burstiness at different
timescales. We also define the “peel” operation at Layer i where some of the “on” periods
of Layer i− 1, rather than occurring during the “on” period of Layer i, they are uniformly
distributed over the time axis (with no overlap) as shown in Fig. 2.7.

A HOMPP can model several levels of burstiness while peeling can adjust the degree
of burstiness. HOMPP is used to investigate the impact of traffic dynamics at different
timescales on TSS accuracy.

Long Term Dynamics

We compare simulation performance of hierarchical traffic. Table 2.3 lists the characteristics
of three traffic sources. H1 has three on-off layers. On and off periods are independent and
exponentially distributed. On average, “on” periods in Layer i contain five “on” periods in
Layer i − 1. H1P3 is generated by peeling H1’s Layer 3 and H1P2 by peeling Layers 3
and 2. The three traffic sources exhibit different burstiness properties. Let the time step
h, and the average “on” period length of Layer 2 be equal to 25. Next, we investigate TSS
performance and source characteristics at this time scale. Fluid trunks with high arrival
workload in H1P3, is less concentrated than that of H1 because H1P3 lacks Layer 3. As
expected, in this time scale, H1P3 has the same marginal distribution and less correlation
as shown in Fig. 2.8a and Fig. 2.8b. In Fig. 2.9, H1P3 has worse simulation performance
than H1 because the queueing due to workload accumulation in larger time scale is less
than that of H1.

Next we compare the traffic characteristics of H1 and H1P2. In Fig. 2.8b, H1P2 lacks
variability in its marginal distribution while arrivals in H1 are more widely spread. H1P2
only has one on-off layer and the “on” periods are on average 1 second long, uniformly
spaced on the time axis. So when observing this trace at a time scale of 25 seconds, the

16

Table 2.3: Parameters of three HOMPP sources.
Traffic Layer 0 Layer 1: mean Layer 2: mean Layer 3:mean

Poisson rate(pkts/sec) on/off length(sec) on/off length(sec) on/off length(sec)
H1 100 1 / 4 25 / 100 625 / 2500

H1P3 100 1 / 4 25 / 475 –
H1P2 100 1 / 88 – –

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lag (25s/lag)

A
ut

oc
ov

ar
ia

nc
e

co
ef

fic
ie

nt
s

H1
H1p3
H1p2

200 400 600 800 1000 1200 1400 1600 1800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

pkts/trunk(25s)

H1
H1p3
H1p2

H1: std =246.4
H1p3: std=244.1
H1p2: std=146.5

a b

Figure 2.8: (a) HOMPP traffic autocovariance coefficient curves. (b) Marginal distribution
of H1 and derived traffic (time step 25s).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

utilzation

E
R

R

H1
H1p3
H1p2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

utilization

E
R

R

H2
H2S
H2B, compress ratio 0.01

a b

Figure 2.9: (a) Simulation errors of H1 and derived traffic (time step 25s). (b) Simulation
errors of H2 and derived traffic (time step 5s).

17

trunk workload fluctuates around the average value in a small range. The workload amount
in consecutive trunks is close and there is still correlation among trunks as shown in Fig.2.8a.
According to the first order statistics, H1P2 is short of long term dynamics compared to
H1. Fig. 2.9a shows the simulation error where, as expected, H1 outperforms H1P3 due to
the rich dynamics in long-term scale. We emphasize that correlation can not be used as the
only indicator for long-term dynamics. The first order statistics should also be considered.
Take an extreme case for example. At certain time scale, traffic has constant average arrival
rate and rate variations within time steps. TSS can not simulate this queue at this time
scale. Even though this trace has strong correlation, it lacks long-term dynamics.

Short-Term Burstiness

If variability in large time scales exists in input traffic, arrivals in long term are the major
factor for queue building. This case favors TSS. However, local burstiness degrades TSS
simulation performance. H2 is a 2-layer HOMPP with exponentially distributed on-off
periods. On Layer 1, the average “on” and “off” periods are 1s and 4s respectively. On
Layer 2, they are respectively 25s and 125s. Set the time step equal to 5s. It is expected
that arrivals most likely cluster within 1/5 of the interval. Smooth H2 to generate a new
source H2S. That is, if there are n arrivals in a time step, place these arrivals according to
uniform distribution over the interval. Therefore, H2S is less bursty than H2, and shows
an improved accuracy as shown in Fig. 2.9b.

The next experiment demonstrates what will happen if we make H2 more locally bursty.
Change H2 local arrival pattern. If there are n arrivals in a time step, the arrivals are placed
uniformly in part of the time step. The compression ratio determines how local bursty the
traffic is. H2B is the derived source of H2 with compression ratio 0.01. Its simulation
accuracy does not degrade, compared to that of H2, as shown in Fig. 2.9b.

To study the impact of local burstiness when queueing in large time scale does not
dominate, we use external shuffling to generate a new source which lacks strong dynamics
in long term. H2 is chopped into blocks of fixed length and then the blocks are randomly
permuted while keeping the relative position of arrivals within a block unchanged. Choose
block length 0.1s. The new source, H2EXT , is less bursty than H2 in long term. Then we
compare H2EXT with its derived traffic with compression ratio 0.5 and 0.1. As show in
Fig. 2.10, local burstiness has an impact.

The above experiments show that TSS feasibility strongly depends on the traffic char-
acteristics and the system utilization. For a given time scale, if source traffic does not show
significant long-term dynamics (long bursts with enough intensity), TSS at the correspond-
ing time step works poorly unless the system is heavily loaded.

2.3.3 Compensation

According to the previous discussion, local queueing dynamics should be counted to improve
simulation accuracy. Assume that local statistics are known, but the exact arrival steps are

18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
R

R

utilization

shuffled trace H2EXT
compress ratio 0.5
compress ratio 0.1

Figure 2.10: Simulation errors of H2EXT and its derived traffic (time step 5s).

unknown. We use TSS to track the queue evolution, and for every time step, add qloc to qt

to compensate local queueing dynamics.

In a time step, given the traffic local statistics, the utilization ρ, zero initial backlog,
and average q(ξ) we can determine qloc, where q(ξ) is the queue length averaged over the
interval provided the arrival sample ξ follows the local statistics. Use off-line simulation to
get the local queueing curve qloc ∼ ρ. Then TSS uses this curve and adds qloc(ρ) to qt to
account for the local queueing effects.

In the following, we experimentally show the performance of the compensation scheme.
As mentioned before, H2S arrivals are uniformly distributed within five-second time steps.
Knowing that, we get qloc ∼ ρ curves. Fig. 2.11a shows the improved simulation accuracy,
especially in low utilization situations. As mentioned before, H2 is a 2-layer Hierarchical
source and the average “on” in Layer 2 is 25 seconds. Within this time scale, the local
dynamics are governed by Layer 1 on-off modulation. Fig. 2.11b shows the results of two
compensation schemes. One scheme assumes arrivals are uniformly distributed within the
interval while the other one takes the burstiness resulted by Layer 1 modulation, into consid-
eration. It shows that more accurate information for local statistics helps the compensation
performance.

When local statistical information is unknown, we use trace-driven methods to extract
local statistics assuming that local statistics are stable for the whole simulation. Feed the
trace into a queue. Assuming zero backlog at the beginning of every time step, record the
average queue length and corresponding utilization for every time step. In the plane of
qloc ∼ ρ, every pair of records is a point and we use curve fitting scheme to get the local
queueing curve. Fig. 2.12a shows such curve for the source H2EXT . Fig. 2.12bshows the
compensation results.

Combining local traffic statistics into TSS makes it work under a broad set of conditions.
Our methods that get local queueing curves are quite rough and preliminary, but they
emphasize that properly transforming local statistical information into macroscopic level
simulation improves accuracy. This scheme provides a basis for improvement. In reality,
local traffic statistics are not expected to change frequently and rapidly thus they can

19

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

utilization

E
R

R
non−compensation
compensation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

E
R

R

H2
Burst compensation
Uniform compensation

a b

Figure 2.11: (a) H2S compensation results (time step 5s). (b) H2 compensation results
(time step 5s).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7
x 10

4

utilization

Lo
ca

l Q
ue

ue
 L

en
gt

h

fitting curve

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utilization

E
R

R

non−compensation
trace−driven compensation

a b

Figure 2.12: (a) Local queueing curve of H2EXT (time step 5s). (b) Compensation results
of H2EXT (time step 5s).

20

be measured on-line. Moreover, under certain scenarios, there are clues for traffic local
statistical properties. For example, Cao et al. [9] observe that packet inter-arrival times tend
to become independent as the number of active connections increases due to the statistical
multiplexing. For this case, the compensation with uniform distribution is expected to
work.

Discussion

David Nicol et al. [64] observe small simulation errors when comparing fluid and packet
level simulation. Their traffic model is a Markov Modulated Process (MMP) and packets
are transmitted at a specified constant rate when the underlying Markov chain is in some
state. So their study does not consider the simulation errors from local traffic dynamics.
Instead, they investigate the errors resulted due to the lack of workload discretization and
flow interference.

Yan [85] derived lower and upper error bounds of TSS. For a single-flow single-server
queue, the distance between two bounds is the time step multiplied by service rate. The
bounds are tight only when queue building is mainly due to inter-trunk workload interaction.
Otherwise, the bound is too loose to be useful because the bound distance is of the order
of the actual queue length. This study helps in determining when bounds are tight.

This study raises several questions: when adjusting the system’s granularity, from fine
to coarse, how to properly abstract the component’s micro behavior into a macroscopic
one. In the single queue case, is it always proper to assume smooth/deterministic micro-
scopic behavior of traffic? As our compensation experiments show, combining microscopic
statistics into the abstract simulation expands simulation-working range.

This research also raises the issue of resolution in traffic modelling. We expect that for
the performance evaluation of queueing systems, unless rare events are evaluated, it does not
help much to model the rich local statistics at the cost of expensive modelling if traffic shows
strong dynamics in larger timescales. This is because the impact of local traffic dynamics
on queue is weakened by strong long-term-dynamics in source traffic. However, fine level
traffic models such as multi-scaling [28] could be helpful in other evaluation scenarios.

2.4 Summary

Time stepped simulation can vary the abstraction levels and point out critical parts in a
network design at a low modelling and simulation cost. Current results are encouraging.
However, in practice, under what kind of scenarios can TSS work? We focus on the accuracy
analysis of a single-flow single-server queue. We identify that the system utilization and
traffic characteristics at short-term and long-term timescales affect the simulation accuracy.
Queueing nonlinearity and local rate variation are two basic error sources for the considered
scenarios. Therefore, we propose compensated TSS to combine local statistical information
into TSS. Our results are encouraging.

Naturally this study will be expanded into networks of queues and study the effects of

21

multi-flow interference and network topology. We plan to study the impact of flow and
spatial granularity in addition to time granularity. In addition, Poisson-driven differential
equations are a powerful tool for solving some queueing problems. We are using this tool to
solve queueing systems that use Markov-hierarchy-onoff fluid input flows. This will provide
insights on multi-resolution modelling errors.

22

Chapter 3

CONCURRENT SIMULATION

It is by now well-documented in the literature that the nature of sample paths of DES can
be exploited so as to extract a significant amount of information, beyond merely an estimate
of J(θ). It has been shown that observing a sample path under some parameter value θ
allows us to efficiently obtain estimates of derivatives of the form dJ/dθ which are in many
cases unbiased and strongly consistent (e.g., see [20, 31, 41] where Infinitesimal Perturbation
Analysis (IPA) and its extensions are described). Similarly, Finite Perturbation Analysis
(FPA) has been used to estimate finite differences of the form ∆J(∆θ) or to approximate
the derivative dJ/dθ through ∆J/∆θ when other PA techniques fail [21].

All of the methods developed to date, regardless of specific details, have been motivated
by the same objective: From a single sample path under θ extract information to estimate
the derivative dJ/dθ or the response of the system, J(θ′), under other parameter values
θ′ 6= θ (see Fig. 3.1). This information can be extremely useful in sensitivity analysis
and optimization of DES as well as data collection for metamodel building. Both of these
applications will be demonstrated later in this report. Next we demonstrate the IPA ap-
proach using an example from the area of communication networks (for more details see
also [17, 16]).

3.1 Introduction

A natural modeling framework for packet-based communication networks is provided through
queueing systems. However, the huge traffic volume that networks are supporting today
makes such models highly impractical. It may be impossible, for example, to simulate at
the packet level a network slated to transport packets at gigabit-per-second rates. If, on the
other hand, we are to resort to analytical techniques from classical queueing theory, we find
that traditional traffic models, largely based on Poisson processes, need to be replaced by
more sophisticated stochastic processes that capture the bursty nature of realistic traffic;
in addition, we need to explicitly model buffer overflow phenomena which typically defy
tractable analytical derivations.

23

CONCURRENT

ES TI M A TOR

WHAT IF…
• Parameter q1 = a were replaced by q1 = b
• Parameter q2 = c were replaced by q2 = d

•
•

SYSTEM

Design
Parameters

Performance
Measures J(.)

ESTIMATES OF:

AND / OR
Of performance measures J(.)
under all WHAT IF Questions

()
θ∂

⋅∂J

Operating Policies,
Control Parameters

CONCURRENT

ES TI M A TOR

WHAT IF…
• Parameter q1 = a were replaced by q1 = b
• Parameter q2 = c were replaced by q2 = d

•
•

SYSTEM

Design
Parameters

Performance
Measures J(.)

ESTIMATES OF:

AND / OR
Of performance measures J(.)
under all WHAT IF Questions

()
θ∂

⋅∂J

Operating Policies,
Control Parameters

Figure 3.1: Concurrent Simulation Principle.

An alternative modeling paradigm, based on Stochastic Fluid Models (SFM), has been
recently considered for the purpose of analysis and simulation [4, 48, 77, 47, 49, 62, 56,
86, 79]. The fluid-flow worldview can provide either approximations to complex discrete-
event models or primary models in their own right. In any event, its justification rests
on a molecular view of packets in moderate-to-heavy loads over high-speed transmission
links, where the effect of an individual packet or cell on the entire traffic process is virtually
infinitesimal, not unlike the effect of a water molecule on the water flow in a river.

Our objective in this chapter is no different from other perturbation analysis techniques:
From a single sample path under θ extract additional information to estimate the derivative
dJ/dθ. In the discrete-event framework such derivative estimates are often biased. To avoid
this problem, we adopt a stochastic fluid model and derive remarkably simple sensitivity
estimators. These estimators turn out to be nonparametric in the sense that they are
computable from data directly observable along a sample path, requiring no knowledge of
the underlying probability law, including distributions of the random processes involved, or
even parameters such as traffic or processing rates. In addition, the estimators obtained are
unbiased under very weak structural assumptions on the defining traffic processes. Finally,
because these estimators are non-parametric we can evaluate them based on data observed
from the sample path of the discrete-event system, thus we do not necessarily need to
construct the stochastic fluid equivalent model. In effect, we use the SFM only for the
analysis part where we derive the structure of the IPA derivative estimators. However,
when we actually evaluate them we simply observe the sample path of the discrete event
system; either the true system or a discrete-event simulator.

The IPA gradient estimators that we derive can be readily used for on-line control pur-
poses. For example, in the context of communication networks they can be used to perform
periodic network management functions in order to guarantee negotiated QoS parameters
and to improve performance. One such example is presented in Chapter 6 (see also [17, 16]

24

θ

x(t)

α(t)

γ(t)

δ(t)

β(t)

Figure 3.2: The basic Stochastic Fluid Model (SFM)

for more details). Aside from solving explicit optimization problems, IPA gradient esti-
mators can be used for expediting the data collection process in metamodel building as
described in Chapter 4.

3.2 The Stochastic Fluid Model (SFM) Setting

The SFM setting is based on the fluid-flow worldview, where “liquid molecules” flow in
a continuous fashion. The basic SFM, used in [80] and shown in Fig. 3.2, consists of a
single-server (spigot) preceded by a buffer (fluid storage tank), and it is characterized by
five stochastic processes, all defined on a common probability space (Ω,F , P) as follows:

• {α(t)}: the input flow (inflow) rate to the SFM,

• {β(t)}: the service rate, i.e., the maximal fluid discharge rate from the server,

• {δ(t)}: the output flow (outflow) rate from the SFM, i.e., the actual fluid discharge
rate from the server,

• {x(t)}: the buffer occupancy or buffer content, i.e., the volume of fluid in the buffer,

• {γ(t)}: the overflow (spillover) rate due to excessive incoming fluid at a full buffer.

The above processes evolve over a time interval [0, T] for a given fixed T > 0. The
inflow process {α(t)} and the service-rate process {β(t)} are assumed to be right-continuous
piecewise constant, with 0 ≤ αmin ≤ α(t) ≤ αmax < ∞ and 0 ≤ βmin ≤ β(t) ≤ βmax < ∞.
Let θ denote the size of the buffer, which is the variable parameter we will concentrate
on for the purpose of IPA. The processes {α(t)} and {β(t)}, along with the buffer size θ,
define the behavior of the SFM. In particular, they determine the buffer content, x(θ; t), the
overflow rate γ(θ; t), and the output flow δ(θ; t). The notational dependence on θ indicates
that we will analyze performance metrics as functions of the given θ. We will assume that
the real-valued parameter θ is confined to a closed and bounded (compact) interval Θ; to
avoid unnecessary technical complications, we assume that θ > 0 for all θ ∈ Θ.

The buffer content x(θ; t) is determined by the following one-sided differential equation,

dx(θ; t)
dt+

=

0, if x(θ; t) = 0 and α(t)− β(t) ≤ 0,
0, if x(θ; t) = θ and α(t)− β(t) ≥ 0,
α(t)− β(t),otherwise

(3.1)

25

with the initial condition x(θ; 0) = x0 for some given x0; for simplicity, we set x0 = 0
throughout the chapter. The outflow rate δ(θ; t) is given by

δ(θ; t) =
{

β(t), if x(θ; t) > 0,
α(t), if x(θ; t) = 0,

(3.2)

where we point out that if we allow θ = 0, then δ(θ; t) = min{α(t), β(t)}. The overflow
rate γ(θ; t) is given by

γ(θ; t) =
{

max{α(t)− β(t), 0}, if x(θ; t) = θ,
0, if x(θ; t) < θ.

(3.3)

This SFM can be viewed as a dynamic system whose input consists of the two defining
processes {α(t)} and {β(t)} along with the buffer size θ, its state is comprised of the buffer
content process, and its output includes the outflow and overflow processes. The state and
output processes are referred to as derived processes, since they are determined by the
defining processes. Since the input sample functions (realizations) of {α(t)} and {β(t)} are
piecewise constant and right-continuous, the state trajectory x(θ; t) is piecewise linear and
continuous in t, and the output function γ(θ; t) is piecewise constant. Moreover, the state
trajectory can be decomposed into two kinds of intervals: empty periods and busy periods.
Empty Periods (EP) are maximal intervals during which the buffer is empty, while Busy
Periods (BP) are supremal intervals during which the buffer is nonempty. Observe that
during an EP the system is not necessarily idle since the server may be active; see (3.2).
Note also that since x(θ; t) is continuous in t, EPs are always closed intervals, whereas BPs
are open intervals unless containing one of the end points 0 or T . The outflow process {δ(t)}
becomes important in modeling networks of SFMs and it will not concern us any further
here, since our interest in this chapter lies in single-node systems.

Let L(θ) : Θ → R be a random function defined over the underlying probability space
(Ω,F , P). Strictly speaking, we write L(θ, ω) to indicate that this sample function depends
on the sample point ω ∈ Ω, but will suppress ω unless it is necessary to stress this fact.
In what follows, we will consider two performance metrics, the Loss Volume LT (θ) and the
Cumulative Workload (or just Work) QT (θ), both defined on the interval [0, T] via the
following equations:

LT (θ) =
∫ T

0
γ(θ; t)dt, (3.4)

QT (θ) =
∫ T

0
x(θ; t)dt, (3.5)

where, as already mentioned, we assume that x(θ; 0) = 0. Observe that 1
T E [LT (θ)] is the

Expected Loss Rate over the interval [0, T], a common performance metric of interest (from
which related metrics such as Loss Probability can also be derived). Similarly, 1

T E [QT (θ)]
is the Expected Buffer Content over [0, T]. In this chapter we are interested in estimates of
dJL(θ)/dθ and dJQ(θ)/dθ provided by the sample derivatives dLT (θ)/dθ and dQT (θ)/dθ.
Accordingly, the objective of the next section is the estimation of the derivatives of JL(θ) and
JQ(θ), which we will pursue through Infinitesimal Perturbation Analysis (IPA) techniques
[41, 20]). Henceforth we shall use the “prime” notation to denote derivatives with respect to

26

θ, and will proceed to estimate the derivatives J
′
L(θ) and J

′
Q(θ). The corresponding sample

derivatives are denoted by L
′
T (θ) and Q

′
T (θ), respectively.

3.3 Infinitesimal Perturbation Analysis (IPA) with respect
to Buffer Size or Threshold

We will concentrate on the buffer size θ in the SFM described above or, equivalently, a
threshold parameter used for buffer control. We assume that the processes {α(t)} and
{β(t)} are independent of θ and of the buffer content. Thus, we consider network settings
operating with protocols such as ATM and UDP, but not TCP. Our objective is to es-
timate the derivatives J

′
L(θ) and J

′
Q(θ) through the sample derivatives L

′
T (θ) and Q

′
T (θ)

which are commonly referred to as Infinitesimal Perturbation Analysis (IPA) estimators;
comprehensive discussions of IPA and its applications can be found in [41, 20]. The IPA
derivative-estimation technique computes L

′
T (θ) and Q

′
T (θ) along an observed sample path

ω. An IPA-based estimate L′(θ) of a performance metric derivative dE[L(θ)]/dθ is unbiased
if dE[L(θ)]/dθ = E[L′(θ)]. Unbiasedness is the principal condition for making the applica-
tion of IPA practical, since it enables the use of the sample (IPA) derivative in control and
optimization methods that employ stochastic gradient-based techniques.

We consider sample paths of the SFM over [0, T]. For a fixed θ ∈ Θ, the interval [0, T]
is divided into alternating EPs and BPs. Suppose there are K busy periods denoted by Bk,
k = 1, . . . ,K, in increasing order. Then, by (3.4)-(3.5), the sample performance functions
assume the following form:

LT (θ) =
K∑

k=1

∫

Bk

γ(θ; t)dt, (3.6)

QT (θ) =
K∑

k=1

∫

Bk

x(θ; t)dt. (3.7)

As mentioned earlier, the processes {α(t)} and {β(t)} are assumed piecewise constant. This
implies that, w.p.1, there exist a random integer N(T) > 0 and an increasing sequence of
time points 0 = t0 < t1 < . . . < tN(T) < tN(T)+1 = T , generally dependent upon the sample
path ω, such that ti is a jump (discontinuity) point of α(t) − β(t); clearly, α(t) − β(t) is
continuous at all points other than t0, . . . , tN(T). We will assume that N(T) has a finite
expectation, i.e., E[N(T)] < ∞.

Viewed as a discrete-event system, an event in a sample path of the SFM may be either
exogenous or endogenous. An exogenous event is a jump in either {α(t)} or {β(t)}. An
endogenous event is defined to occur when the buffer becomes full or empty. We note
that the times at which the buffer ceases to be full or empty are locally independent of θ,
because they correspond to a change of sign in the difference function α(t) − β(t) (by a
random function f(θ) being “locally independent” of θ we mean that for a given θ there
exists ∆θ > 0 such that for every θ̄ ∈ (θ −∆θ, θ + ∆θ), w.p.1 f(θ̄) = f(θ), where ∆θ may
depend on both θ and on the sample path). Thus, given a BP Bk, its starting point is one

27

 x(t)

θ

ξ1
η1 u1,1 v1,1 u1,2 v1,2

B1

F1,1 F1,2

B2 B3

t

Figure 3.3: A typical sample path of a SFM

where the buffer ceases to be empty and is therefore locally independent of θ, while its end
point generally depends on θ. Denoting these points by ξk and ηk(θ) we express Bk as

Bk = (ξk, ηk(θ)), k = 1, . . . , K

for some random integer K. The BPs can be classified according to whether some overflow
occurs during them or not. Thus, we define the random set

Φ(θ) := {k ∈ {1, . . . , K} : x(t) = θ,

α(t)− β(t) > 0 for some t ∈ (ξk, ηk(θ))}.
For every k ∈ Φ(θ), there is a (random) number Mk ≥ 1 of overflow periods in Bk, i.e., inter-
vals during which the buffer is full and α(t)−β(t) > 0. Let us denote these overflow periods
by Fk,m, m = 1, . . . , Mk, in increasing order and express them as Fk,m = [uk,m(θ), vk,m],
k = 1, . . . ,K. Observe that the starting time uk,m(θ) generally depends on θ, whereas the
ending time vk,m is locally independent of θ, since it corresponds to a change of sign in the
difference function α(t)− β(t), which has been assumed independent of θ. Finally let

B(θ) = |Φ(θ)| (3.8)

where |·| denotes the cardinality of a set, i.e., B(θ) is the number of BPs in [0, T] during
which some overflow is observed. To summarize:

• There are K busy periods in [0, T], with Bk = (ξk, ηk(θ)), k = 1, . . . ,K.

• k ∈ Φ(θ) iff some overflow occurs during Bk; we set B(θ) = |Φ(θ)|.
• For each k ∈ Φ(θ), there are Mk overflow periods in Bk, i.e., Fk,m = [uk,m(θ), vk,m],

m = 1, . . . ,Mk.

A typical sample path is shown in Fig. 3.3, where K = 3, Φ = {1, 3}, M1 = 2, M2 = 0,
M3 = 1.

Next we present the IPA derivative estimates. Note that the results of the next section
can be derived using either finite differences or direct sample differentiation. We only present
the main results without any proofs. The interested reader is referred to Appendix B or
[17] for details.

28

3.3.1 Infinitesimal Perturbation Analysis

In this subsection, we derive explicitly the sample derivatives L
′
T (θ) and Q

′
T (θ) of the loss

volume and work, defined in (3.6) and (3.7), respectively. We then show that they provide
unbiased estimators of the expected loss volume sensitivity dE[LT (θ)]/dθ and the expected
work sensitivity dE[QT (θ)]/dθ.

Since we are concerned with the sample derivatives L
′
T (θ) and Q

′
T (θ), we have to identify

conditions under which they exist. Observe that any endogenous event time (a time point
when the buffer becomes full or empty) is generally a function of θ; see also (3.1). Denoting
this point by t(θ), the derivative t′(θ) exists as long as t(θ) is not a jump point of the
difference process {α(t)− β(t)}. Recall that the times at which the buffer ceases to be full
or empty are locally independent of θ, because they correspond to a change-of-sign of the
difference sample function α(t)−β(t), which does not depend on θ. Excluding the possibility
of the simultaneous occurrence of two events, the only situation preventing the existence
of the sample derivatives L

′
T (θ) and Q

′
T (θ) involves an interval during which x(t) = θ and

α(t)− β(t) = 0, as seen in (3.3)); in this case, the one-sided derivatives of LT (θ)and QT (θ)
exist and can be obtained with the approach of the previous section. In order to keep the
analysis simple, we focus only on the differentiable case. Therefore, the analysis that follows
rests on the following technical conditions:

Assumption 1
a. W.p.1, α(t)− β(t) 6= 0.
b. For every θ ∈ Θ, w.p.1, no two events may occur at the same time.

Remark 1 We stress the fact that the above conditions for ensuring the existence of the
sample derivatives L

′
T (θ) and Q

′
T (θ) are very mild. Part b above is satisfied whenever the

cdf’s (or conditional cdf’s) characterizing the intervals between exogenous event occurrences
are continuous. For example, in the simple case where β(t) = β and α(t) can only take two
values, 0 and α > β, suppose that the inflow process switches from α to 0 after θ/(α − β)
time units w.p. 1. The buffer then becomes full exactly when an exogenous event occurs,
and the loss volume sample function experiences a discontinuity w.p. 1. Such situations
can only arise for a small finite subset of Θ (for which one can still calculate either the left
or right derivatives) and they are of limited practical consequence.

We next derive the IPA derivatives of LT (θ)and QT (θ). Recall that B(θ) = |Φ(θ)|, i.e.,
the number of BPs containing at least one overflow period.

Theorem 1 For every θ ∈ Θ,
L
′
T (θ) = −B(θ). (3.9)

Theorem 2 For every θ ∈ Θ,

Q
′
T (θ) =

∑

k∈Φ(θ)

[ηk(θ)− uk,1(θ)]. (3.10)

In simple terms, the contribution of a BP, Bk, to the sample derivative Q
′
T (θ) in (3.10)

is the length of the interval defined by the first point at which the buffer becomes full

29

and the end of the BP. Once again, as in (3.9), observe that the IPA derivative Q
′
T (θ) is

nonparametric, since it requires only the recording of times at which the buffer becomes
full (i.e., uk,1(θ)) and empty (i.e., ηk(θ)) for any Bk with k ∈ Φ(θ).

IPA Unbiasedness

We next show the unbiasedness of the IPA derivatives L
′
T (θ) and Q

′
T (θ) obtained above. In

general, the unbiasedness of an IPA derivative L′(θ) has been shown to be ensured by the
following two conditions (see [71], Lemma A2, p.70):

Condition 1. For every θ ∈ Θ, the sample derivative L′(θ) exists w.p.1.

Condition 2. W.p.1, the random function L(θ) is Lipschitz continuous throughout Θ,
and the (generally random) Lipschitz constant has a finite first moment.

Consequently, establishing the unbiasedness of L
′
T (θ) and Q

′
T (θ) as estimators of dE[LT (θ)]/dθ

and dE[QT (θ)]/dθ, respectively, reduces to verifying the Lipschitz continuity of LT (θ) and
QT (θ) with appropriate Lipschitz constants. Recall that N(T) is the random number of all
exogenous events in [0, T] and that we have assumed E[N(T)] < ∞.

Theorem 3 Under Assumption 1,

1. If E[N(T)] < ∞, then the IPA derivative L′T (θ) is an unbiased estimator of dE[LT (θ)]/dθ.

2. The IPA derivative Q′
T (θ) is an unbiased estimator of dE[QT (θ)]/dθ.

Remark. For the more commonly used performance metrics 1
T E [LT (θ)] (the Expected

Loss Rate over [0, T]) and 1
T E [QT (θ)] (the Expected Buffer Content over [0, T]), the Lips-

chitz constants in Theorem 3 become N(T)/T and 1, respectively. As T →∞, the former
quantity typically converges to the exogenous event rate.

3.3.2 IPA Estimation Algorithm

Algorithm 1 • Initialize a counter C := 0 and a cumulative timer T := 0.

• Initialize τ := 0.

• If an overflow event is observed at time t and τ = 0:

– Set τ := t

• If a busy period ends at time t and τ > 0:

– Set C := C − 1 and T := T + (t− τ)

– Reset τ := 0.

• If t = T , and τ > 0:

30

– Set C := C − 1 and T := T + (t− τ).

The final values of C and T provide the IPA derivatives L
′
T (θ) and Q

′
T (θ) respectively.

We remark that the “overflow” and “end of BP” events are readily observable during actual
network operation. In addition, we point out once again that these estimates are indepen-
dent of all underlying stochastic features, including traffic and processing rates. Finally,
the algorithm is easily modified to apply to any interval [T1, T2].

3.4 Conclusions and Future Work

Stochastic Fluid Models (SFM) can adequately describe the dynamics of complex discrete
event systems or constitute primary models in their own right. In this chapter, we have
considered single-node SFMs from the standpoint of IPA derivative estimation. In partic-
ular, we have developed IPA estimators for the loss volume and work as functions of the
buffer size, and shown them to be unbiased and nonparametric. The simplicity of the esti-
mators and their nonparametric property suggest their application to on-line optimization
problems.

The sample derivative analysis holds the promise of considerable extensions to multi-
ple SFMs as models of actual networks and to multiple flow classes that can be used for
differentiating traffic classes with different Quality-of-Service (QoS) requirements. Ongoing
research has already led to very encouraging results, reported in [17, 16, 15], involving IPA
estimators and associated optimization for flow control purposes in multi-node models.

31

Chapter 4

NEURAL NETWORK
METAMODELING

Simulation is one of the most powerful tools for modeling and evaluating the performance
of complex systems, however, it is computationally slow. One approach to overcome this
limitation is to develop a “metamodel”. In other words, generate a “surrogate” model of
the original system that accurately captures the relationships between input and output,
yet it is computationally more efficient than simulation. Neural networks (NN) are known
to be good function approximators and thus make good metamodel candidates. During
training, a NN is presented with several input/output pairs, and is expected to learn the
functional relationship between inputs and outputs of the simulation model. So, a trained
net can predict the output for inputs other than the ones presented during training. This
ability of NNs to generalize depends on the number of training pairs used. In general, a
large number of such pairs is required and, since they are obtained through simulation, the
metamodel development is slow. When using concurrent simulation, as in Chapter 3, we
can obtain sensitivity information with respect to various input parameters. In this chapter,
we investigate the use of sensitivity information to reduce the simulation effort required for
training a NN metamodel.

4.1 Introduction

Simulation is arguably the most versatile and general-purpose tool available today for mod-
eling complex systems such as Discrete Event Systems (DES). It can be used for performance
evaluation, system design, decision making, and planning. Such applications typically in-
volve the use of simulation to answer a multitude of “what-if” questions under various
scenarios, each corresponding to different parameters, designs or decisions. However, simu-
lation is notoriously time consuming. For complex systems, performance evaluation under
a single set of input parameters can take several minutes even hours. As a result, it is
impractical (if at all feasible) to perform any parametric study of system performance,
especially for systems with a large parameter space. Unless substantial speedup of the

32

performance evaluation process can be achieved, systematic performance studies of most
real-world problems are beyond reach, even with supercomputers.

One alternative for achieving the required speedup is through “metamodeling”. In this
framework, any simulator is viewed as a function that maps any vector of input parameters
x = [x1, · · · , xN] to a set of M performance metrics of interest y = [y1, · · · , yM], that is

y = Φ(x). (4.1)

Since the evaluation of the function Φ(·) is generally complex and time consuming, meta-
modeling seeks a much simpler and computationally more efficient “surrogate model” Φ̂(·)
such that

Φ̂(x) ≈ Φ(x). (4.2)

for all input parameters of interest. A typical approach for building Φ̂(·) is to use simulation
to obtain a training set of Q input-output pairs {(xi,yi), i = 1, · · · , Q}, and try to determine
a function that captures the input-output relationship that generated the Q samples. Of
course, the expectation is that the surrogate model will be such that (4.2) will hold not
only for the training pairs, but also for any x in some domain of interest. This ability of
the surrogate model to produce a reasonable response to an input that is not included in
the training set is referred to as generalization.

Several authors have addressed simulation metamodeling. [88] used polynomial fitting to
develop a metamodel for a Tactical Electronic Reconnaissance Simulation Model (TERSM)
that estimates the number of ground-based radar sites detected by a reconnaissance aircraft
as a function of its flying mission. Other approaches have used statistical analysis. [70] used
least squares estimation for non-linear metamodel estimation while [24] used regression
using Bayesian methods. Neural networks (NN) are generally known as good function
approximators and thus make good candidates for surrogate functions. [45] have used
a backpropagation neural net to capture the behavior of a Command and Control (C2)
network. In some of our earlier work [14], we used a Cascade Correlation NN [26] to
generate metamodels for the TERSM mentioned above and for an Aircraft Refueling and
Maintenance System (ARMS).

Neural network metamodels, though versatile, generally require a large number of train-
ing pairs before they acquire good generalization capabilities. This implies that many
simulation runs are necessary to build a metamodel. To address this problem, in our earlier
work [14] we also proposed the use of Concurrent Estimation [21] as a possible way of col-
lecting more training pairs from a single simulation run. In this work we propose a different
approach where we use sensitivity (derivative) information to train the neural network.

More specifically, it is by now well-documented in the literature that the nature of sample
paths of Discrete Event Systems (DES) can be exploited so as to extract a significant amount
of information, beyond merely an estimate of a performance measure Φ(x). It has been
shown that observing a sample path under some parameter value x allows us to efficiently
obtain estimates of derivatives of the form dΦ/dx which are in many cases unbiased and
strongly consistent (e.g., see [11, 31, 41] where Infinitesimal Perturbation Analysis (IPA)
and its extensions are described). The question that arises then is how the sensitivity

33

information, made available by PA, can be used to construct metamodels. In this chapter
we recognize that since (4.2) must hold for all x in the domain of interest, the partial
derivatives of the two functions with respect to any xi should also be equal. As a result, we
modify the standard backpropagation algorithm to also use this information as explained
in Section 4.4.

To our knowledge, this approach of using sensitivity information to reduce the training
sample size is new. For the “classification” problem (as opposed to the “function approxi-
mation” problem we investigate in this chapter) several authors have addressed the issue of
determining the minimum training sample size for a neural network to have good general-
ization properties. [7] found that for a network with N nodes and W weights, the number
of randomly selected samples required to achieve correct classification for at least (1 − ε

2)
fraction of the test examples is m ≥ O

(
W
ε log N

ε

)
. [59] found a tighter bound assuming

that the training samples are chosen close to the cluster boundaries. The generalization
performance of practical algorithms is also the focal point in [75]. These authors use the
so called “ill-disposed” algorithm to derive a probability distribution that allows them to
determine a more realistic bound on the sample size as well as the average generalization
error.

This chapter is organized as follows. In the next section we present the notation that we
will use in the sequel. In Section 4.3 we briefly describe the standard backpropagation neural
network and in Section 4.4 we modify the algorithm to include any available sensitivity
information. In Section 4.5 we demonstrate the potential advantages of the approach with
two numerical examples. Finally we close with conclusions and future plans in Section 4.6.

4.2 Notation

uij

Input Layer Hidden Layer Output Layer

xi Σ
IN
jz jz

kyIN
ky

g(.)
wjk Σ f(.)

.

.

.

.

.

. .

.

.
.

.

.

uij

Input Layer Hidden Layer Output Layer

xi Σ
IN
jz jz

kyIN
ky

g(.)
wjk Σ f(.)

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

Figure 4.1: 3-Layer neural network

For the purposes of this chapter, we assume a 3-layer neural network (see Fig. 4.1) where

M : Number of units (neurons) in the output layer.

H: Number of units in the hidden layer.

N : Number of units in the input layer.

34

yk: Output of the kth unit of the output layer, k = 1, · · · ,M .

zj: Output of jth hidden unit, j = 0, · · · ,H (z0 = 1 corresponds to the bias input of output
layer units).

xi: Input of the ith unit, i = 0, · · · , N (x0 = 1 corresponds to the bias input of hidden layer
units).

tp = [tk]p. Target output given an input vector xp, where k = 1, · · · , M , p = 1, · · · , Q and
Q is the number of training pairs.

dki: Sensitivity of kth network output with respect to its ith input, dki = ∂yk
∂xi

.

Sp = [ski]p Target sensitivity (dki) given an input vector xp. (For DES, we assume that
this information is obtained through some Perturbation Analysis (PA) technique).

f(·): Activation function of output layer units.

g(·): Activation function of hidden layer units.

4.3 Backpropagation Neural Net

The activation of the kth output unit of a standard, three layer backpropagation neural
network (BPNN) as a function of the input x = [x1, · · · , xn] is given by:

yk = f
(
yIN

k

)
(4.3)

yIN
k =

H∑

j=0

wjkzj (4.4)

zj = g
(
zIN
j

)
(4.5)

zIN
j =

N∑

i=0

uijxi (4.6)

where, wjk is the weight from the jth hidden unit to the input of the kth output unit and
uij is the weight from the ith input to the jth hidden unit.

The learning procedure of the backpropagation neural network is based on minimizing
the sum of squared errors. That is, minimize an error function of the form:

E =
1
2

M∑

k=1

(tk − yk)2. (4.7)

The minimization is done by gradient descent methods, where backpropagation involves the
chain rule to back propagate errors from the network’s outputs to each of the network’s
weights, see [27] for details. Next, we investigate a possible way of utilizing the sensitivity
information that can be obtained through some PA technique.

35

4.4 Derivative Backpropagation Neural Networks

If equation (4.2) is supposed to hold for all x in the domain of interest of x, then it is
reasonable to require that:

∂Φ̂(x)
∂xi

≈ ∂Φ(x)
∂xi

, i = 1, · · · , N. (4.8)

In other words, the sensitivity of the neural net output with respect to each one of its inputs
should be approximately equal to the sensitivity of the simulation model with respect to the
same inputs. Though complex, it is possible to determine the neural network’s sensitivity
with respect to its inputs using calculus. Also, for several discrete event systems, the model’s
sensitivity with respect to its input parameters can be calculated using some perturbation
analysis technique. Thus, the main idea behind our approach is to adapt (4.7) to account
not only for the error in the output value, but for the error in the sensitivity as well.
Therefore, the neural net training objective function becomes

E =
α

2

M∑

k=1

(tk − yk)2 +
β

2

M∑

k=1

N∑

i=1

(ski − dki)
2 . (4.9)

The first term is the usual error term used in standard backpropagation neural networks.
The second term, is the error in the sensitivity of the neural net compared to the sensitivity
of the model. Finally, 0 ≤ α ≤ 1 and β = 1 − α are weighting factors that determine the
importance to be associated to the derivative error. Note that if β = 0, then we get the
standard backpropagation algorithm.

Next, if we are interested in minimizing the error function of (4.9), we need to determine
the neural network’s sensitivity with respect to its inputs, dki. For the 3-layer network we
consider in this chapter, this is done by the chain rule of differentiation as shown below:

dki =
∂yk

∂xi
= f ′

(
yIN

k

) ∂yIN
k

∂xi

= f ′
(
yIN

k

) H∑

j=1

wjk
∂zj

∂xi

= f ′
(
yIN

k

) H∑

j=1

wjkg
′ (zIN

j

) ∂zIN
j

∂xi

= f ′
(
yIN

k

) H∑

j=1

wjkg
′ (zIN

j

)
uij (4.10)

Subsequently, if we want to use gradient based techniques to minimize the error function
of (4.9) we need ∂E

∂wjk
and ∂E

∂uij
for all i, j, k which are derived next, through repetitive use

of the chain rule of differentiation.

36

∂E

∂wJK
= −α(tK − yK)

∂yk

∂wJK
− β

N∑

i=1

[
eKi

∂dKi

∂wJK

]

= −α(tK − yK)f ′
(
yIN

K

)
zJ

−β
N∑

i=1

[
eKi

(
f ′′

(
yIN

K

)
zJS(K, i) + f ′

(
yIN

K

)
g′

(
zIN
J

)
uiJ

)]
(4.11)

where
eki = (ski − dki)

and

S(k, i) =
H∑

j=1

wjkg
′ (zIN

j

)
uij .

Similarly,

∂E

∂uIJ
= −α

M∑

k=1

(tk − yk)f ′
(
yIN

k

)
wJkg

′ (zIN
J

)
xI

−β
M∑

k=1

N∑

i=1

[
eki

(
f ′′

(
yIN

k

)
wJkg

′ (zIN
J

)
xIS(k, i)

+ f ′
(
yIN

k

)
wJk

(
g′′

(
zIN
J

)
uiJxI + g′

(
zIN
J

)))]
(4.12)

Note that these expressions get considerably simpler when the activation function of the
output layer units are linear. In this case, f(x) = x, f ′(x) = 1, and f ′′(x) = 0. Therefore,

∂E

∂wJK
= −α(tK − yK)zJ − βg′

(
zIN
J

) N∑

i=1

(sKi − dKi)uiJ (4.13)

and

∂E

∂uIJ
= −αg′

(
zIN
J

)
xI

M∑

k=1

(tk − yk)wJk

−β
M∑

k=1

N∑

i=1

ekiwJk ·
(
g′′

(
zIN
J

)
uiJxI + g′

(
zIN
J

))
(4.14)

Finally, the weight updates at every iteration t are given by

wjk(t + 1) = wjk(t)− γ
∂E

∂wjk
(4.15)

and
uij(t + 1) = uij(t)− γ

∂E

∂uij
(4.16)

37

for all i = 0, · · · , N , j = 0, · · · , H, k = 1, · · · ,M . Where γ is the learning rate and ∂E
∂wjk

and
∂E
∂uij

are given by (4.11) and (4.12) respectively (Note that i = 0 corresponds to the bias input
of a neuron). In the sequel, this will be referred to as the Derivative Backpropagation Neural
Network (DBPNN). At this point, it is worth pointing out that apart from the learning rate
γ one needs to determine the weight to be given to the derivative error β = 1− α. This is
an important factor that may affect the convergence of the algorithm as discussed later in
the chapter.

4.5 Numerical Results

In this section we present some results that show the benefit of using the DBPNN training
algorithm described in equations (4.15) and (4.16).

In our first experiment we try to approximate the function y = x2 in the interval
[−10, 10]. For this experiment, we use a neural network with 20 hidden units. First, we
used just three input-output pairs {(−10, 100), (0, 0), (10, 100)} to train a standard back-
propagation neural network (BPNN). Subsequently, we added the derivatives at these three
points and used the information to train a network using DBPNN. For this experiment we
used β = 0.1. The outputs of the two networks as well as the target output function are
shown in Fig. 4.2. As seen in the figure, the DBPNN approximates the target function much
better than the standard BPNN. Also shown in the figure is the absolute value of the ap-
proximation error of each network for every value of x in [−10, 10] which also demonstrates
the benefit of DBPNN.

0

20

40

60

80

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

E
rr

or

 BPNN Error

 DBPNN Error

-20

20

60

100

140

-10 -8 -6 -4 -2 0 2 4 6 8 10

y

 Target Output

 BPNN Output

 DBPNN Output

Figure 4.2: Approximation of the function y = x2 using NNs

In order to compare the generalization ability of each network, we integrate the area

38

under the error curve of each network and plot it in Fig. 4.3 as a function of the number of
points used during the training of the two networks. As seen in the figure, DBPNN achieves
much better generalization than standard backpropagation neural net, especially when the
number of training points is small.

0

100

200

300

400

500

600

3 4 5 6 7 8 9 10

Number of Training Points

E
rr

or
 A

re
a

BPNN

DBPNN

Figure 4.3: Area under the absolute error of the NN approximations for y = x2

Next we consider an M/M/1 queueing network where we are interested in the average
time that customers spend in the system S, as a function of the traffic intensity ρ. For
this system, the IPA algorithm for determining dS

dρ is given in [11]. Fig. 4.4 shows the
approximations generated by BPNN and DBPNN when both networks have 20 hidden units
and are trained with only 5 train points and for DBPNN β = 0.01. As seen in the figure,
DBPNN again achieves a much better generalization than the standard backpropagation
network.

Finally, Fig. 4.5 shows that area under the generalization error for the two networks.
Again, DBPNN achieves a much better generalization than BPNN especially for a small
number of training points.

Note that for the second experiment we have set the β parameter to a very small value
(β = 0.01). The reason is that as ρ approaches 1, the system time goes asymptotically
to infinity and therefore the derivative at this point becomes very large. As a result, the
derivative error for this point dominates the entire error function, so, the neural network in
its effort to minimize the total error, it approximates only that derivative well, but does not
approximate well the remaining points. Furthermore, we point out that other factors may
also play a role in the value of the β parameter. For example, if we have noisy estimates of
the derivatives, it may be preferable to also set β to a small value in order to avoid noise
from taking over the output of the neural network. More research is required to determined
how β is set.

39

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ys

te
m

 T
im

e

 Target Output

 BPNN Output

 DBPNN Output

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Traffic Intensity (U)

E
rr

or

 BPNN Error

 DBPNN Error

Figure 4.4: Approximation of the average system time in an M/M/1 queueing system

4.6 Summary

When dealing with complex systems, simulation is usually the only alternative for perfor-
mance evaluation however, it is notoriously slow, thus the need for “metamodels”. Neural
networks are considered as good function approximators thus make good metamodel candi-
dates. However, if a neural net is to adequately learn the functional relationship between the
inputs and outputs of a simulation model it requires a significant number of input/output
pairs. Since such information can only be obtained through simulation, it means that the
training phase of the neural network will be long. In this chapter, we investigate the use
of sensitivity information in the training of backpropagation neural network. Some pre-
liminary results indicate that the use of sensitivity information can significantly reduce the
number of training input/output pairs required which in turn implies that the metamodel
development phase will be expedited.

40

0

0.2

0.4

0.6

0.8

1

3 5 7 9 11 13 15

Number of Training Points

E
rr

or
 A

re
a

BPNN

DBPNN

Figure 4.5: Area under the absolute error of the NN approximations for the average system
time in an M/M/1 System

41

Chapter 5

HIERARCHICAL
DECOMPOSITIONS AND THE
CLUSTERING APPROACH

In this chapter, we discuss the use of clustering methods in hierarchical simulation of com-
plex systems and present an application to a computer security problem. First, we discuss
the basic concepts for multi-resolution simulation modelling of complex stochastic systems.
We argue that high-resolution output data should be classified into groups that match un-
derlying patterns or features of the system behavior before sending group averages to the
low-resolution modules to keep the statistics fidelity. We propose high-dimensional data
clustering as a key interfacing component between simulation modules with different reso-
lutions and use unsupervised learning schemes to recover the patterns for the high-resolution
simulation results. Subsequently, we give the examples of using Hidden Markov Model as an
effective clustering tool for this task. Next, we apply the clustering techniques in the context
of computer security and give some examples of using Hidden Markov Models (HMMs) for
the purpose of system modelling for anomaly detection.

5.1 Introduction

In modelling complex systems it is impossible to mimic every detail through simulation.
The common approach is to divide the whole system hierarchically into simpler modules,
each with different simulation resolution. In this context, the output of a module becomes
the input parameters to another, as illustrated in Fig. 5.1. The decomposed modules can
be high-resolution or low-resolution models. High-resolution, e.g. the usual discrete-event
simulation models, take detailed account for all possible events, but are generally time con-
suming. Low-resolution modules perform aggregate evaluation on the module functionality,
i.e., determine what would happen “on the average”. Such modules are less time consuming
and can be any of the following components: differential equations, standard discrete-event

42

simulation, and fluid simulation. Furthermore, the decomposed modules can also be an
optimization or decision supporting tool.

Complex
System INPUT OUTPUT

MH-1

ML-2
MH-3

ML-1 MH-2

OUTPUT INPUT

.

.

.

.

.

.

…

.

.

ML-3

DECOMPOSITION

Figure 5.1: Decomposition of complex systems

In a hierarchical setting, the lower level simulator (typically with a high resolution) gen-
erates output data which are then taken as input for the higher level simulator (typically
a low-resolution model). Hierarchical simulation is a common practice, but the design of
hierarchy is always ad hoc. A popular practice is to use the mean values of variables from
the lower level output as the input to the higher level. This implies that significant statis-
tical information can be lost in this process, resulting in potentially completely inaccurate
results. Especially when the ultimate output of the simulation process is of the form 0 or
1 (e.g.,“lose” or “win” a combat), such errors can provide the exact opposite of the real
output.

Quite often, the system being simulated is such that the high-resolution model produces
so widely divergent outputs that it does not make sense to summarize such output through
a single average over the entire sample space. In such cases, we must subdivide the sample
space into segments, and get the high- resolution model to produce an appropriate input to
the low-resolution model for each such segment. Essentially, the low-resolution model will
be broken down into a number of distinct components, one for each segment of the sample
space. To carry out such a segmentation, the high-resolution paths first need to be grouped
by their common features. These features then determine and feed the corresponding low-
resolution model. This grouping procedure is essentially an unsupervised classification
procedure, based on some similarity measure. This inspired us to use high-dimensional
clustering techniques to group the high-resolution sample paths into meaningful clusters
and pass on to the lower resolution modules with the statistical fidelity preserved.

43

5.1.1 Design of the Interface

A systematic design and analysis framework for multi-resolution complex systems is defi-
nitely needed. Here we present some fundamental components of such a framework. Our
effort is directed at developing an interface between two simulation levels to preserve sta-
tistical fidelity to the maximum extent that available computing power allows. In a typical
hierarchical simulation model, the lower lever consist of a high-resolution model, such as
the discrete event simulator that generates several sample paths given some input param-
eters u. The output of such simulation models is then used as input to the higher level
model (typically a low-resolution model). The question is how much and what information
we need to pass from the high-resolution to the low-resolution model such that statistical
fidelity is preserved.

Note that each sample path generated by the high-resolution model is also a func-
tion of some randomness ω (a random number sequence generated through some random
seed). Thus, any function evaluated over an observed sample path (e.g., h(u, ω) is also a
random variable. Typically, we are not interested in the value of h(u, ω) obtained from
a single sample path but rather the expectation E{h(u, ω)}. Based on this, in hierar-
chical simulation it is customary to use E{h(u, ω)} as an input parameter to the higher
level model as seen in Fig. 5.2. This is often highly unsatisfactory, since the mean often
obscures important features of the high-resolution output. Said in another way, we are
seeking E{L(h(u, ω))}, where L(·) is a function corresponding to the low-resolution model,
but what we end up evaluating by passing a single average is L(E{h(u, ω)}); however, in
general E{L(h(u, ω))} 6= L(E{h(u, ω)}).

INTERFACE

HIGH-RESOLUTION
MODEL

h(u,ωωωω)

INPUT: u

RANDOMNESS: ωωωω

LOW-RESOLUTION
MODEL

L(a)

h(u,ωωωω1),…, h(u,ωωωωN) Averaging:
a = E{ h(u,ωωωω) }

Parameter: a x = L(a)

N simulated
scenarios

Figure 5.2: Hierarchical model interface: passing a simple average to the lower resolution
model

To solve this problem we propose the use of clustering to identify groups of sample
paths that have some “common features”, and therefore, when averaged together do not

44

cause the loss of too much information. This approach in shown in Fig. 5.3. From the N
observed sample paths we identify m < N groups that share some common features and
determine m input parameters a1, . . . ,am where ai = E{hi(u, ω)} and hi(·) identifies all
sample paths in cluster i. Subsequently, each parameter ai is used as an input to a lower
resolution model and finally we obtain E{L(ai)} over m low-resolution components, which
we claim is a better estimate of the overall system output than the one obtained using a
single average.

INTERFACE

HIGH-RESOLUTION
MODEL

h(u,ωωωω)

INPUT: u

RANDOMNESS: ωωωω

L-RM

L(a1)

h(u,ωωωω1),…, h(u,ωωωωN)

 a1
L(a1)

N simulated
scenarios

L-RM

L(am)

Clustering:
a1,…, am, m<N

L(am)

Averaging:

x = E{ L(ai) }

 am

…

Figure 5.3: Hierarchical model interface: passing several averages to the lower resolution
model, one for each cluster

One may pose the following question: Since the desired output is of the form E{L(h(u, ω))},
why bother with clustering at all when we can evaluate L(E{h(u, ω)}) for all N obtained
samples and then perform the required expectation, especially since the low-resolution mod-
els are generally easy to evaluate? The answer to this question lies in the derivation of the
low-resolution model. Typically, L(a) assumes that a is an expectation and therefore it
would be meaningless to use some quantity obtained from a single sample path.

5.1.2 Clustering Tools

Based on the above design principles of interface for the multi-resolution simulation frame-
work, we have proposed two different types of clustering tools, i.e., ART based on Neural
Networks, and HMM based on stochastic dynamics.

ART neural networks were developed by Carpenter and Grossberg [10] to understand
the clustering function of the human visual system. They are based on a competitive

45

learning scheme and are designed to deal with the stability/plasticity dilemma in clustering
and general learning. ART neural networks successfully resolve this dilemma by matching
the input pattern with the prototypes. If the matching is not adequate, a new prototype
is created. In this way, previously learned memories are not eroded by new learning. In
addition, the ART neural network implements a feedback mechanism during learning to
enhance stability. Our experiments [23, 13] of using ART neural networks with combat
simulation paths have been quite successful. We believe further improvement with the
ART structure can lead to a fundamental breakthrough in large data clustering, which is
needed in complex systems modelling. We have also proposed a heuristic that allows the
magnitude of the input pattern to play a role in the clustering function. Furthermore,we
are developing a generic numerical clustering tool, based on the ART neural network, that
can be used for many important problems in intelligent data analysis.

In general, the description of a typical sample path generated by a discrete-event system
requires a large amount of data since such sample paths are typically quite long. This implies
that the dimension of each input pattern will also be large. However for high dimensional
data most of the clustering algorithms (including ART) will involve huge computational
effort; thus they are not practical for simulation modelling purposes. For this reason we
develop a new clustering approach where we try to take advantage of the statistical structure
behind a typical sample path. For high dimensional complex systems we try to use a Hidden
Markov Model (HMM), which has been successfully used in speech recognition and other
areas [69] to characterize each observed sample path. In our approach, we use an HMM
to describe an arbitrary sample path and thus we cluster together all sample paths whose
corresponding HMMs have a high similarity measure (to be defined in Section 5.2). The
advantage of this approach is that the amount of data required to describe an HMM is
generally much smaller than the amount of data required to explicitly describe an observed
sample path and as a result the HMM approach is more efficient.

5.2 Hidden Markov Model as a Clustering Tool

A sample path generated by a discrete-event system consists of a sequence (ek, tk), k =
1, 2, . . . , K, where ek denotes the kth event and tk its corresponding occurrence time. For
typical systems, the number of observed events K is very large and thus attempting to
cluster sample paths “directly”, i.e., by making explicit use of the entire event sequence
(ek, tk), requires the input vectors to be of a very large dimension which has an adverse effect
on the computational requirements of most clustering tools (including ART). To address
this problem, we observe a sample path that is generated by an arbitrary system and try to
describe it by some Markov Chain, and thus we use the theory of Hidden Markov Models
(HMMs) to identify its parameters. Once we identify the HMM parameters we define a
similarity measure among each obtained HMM and cluster together all sample paths with
the largest similarity. The advantage of this approach is that the amount of information
required to describe an HMM is considerably less than the amount of information required
to describe a sample path. Even though the identification of the HMM parameters requires
some additional computational overhead, our experiments have shown that in overall, the

46

HMM approach is considerably faster than direct clustering approaches. Incidentally, we
point out that this approach makes no a priori assumptions about the statistical distribution
of the data to be analyzed.

5.2.1 Experimental Design

Next, we demonstrate the HMM clustering approach through an example. For the purposes
of our example, we assume that we have three systems S1 ,S2 and S3. When simulated,
each system generates sample paths Qij , i = 1, 2, 3, j = 1, 2, . . ., where Qij corresponds to
the jth sample path generated by system Si. When clustering sample paths, it would be
reasonable to expect that sample paths generated from the same system are grouped in the
same cluster.

In this example, we generate 9 sample paths, 3 from each system and develop a way
to distinguish between sample paths obtained from different systems. To achieve this, we
first associate an HMM λi = (Ai, Bi, πi) to each sample path i = 1, . . . , 9, where we use
the notation of Rabiner [69]. Ai denotes the state transition probability, Bi denotes the
observation symbol probability at every state and πi denotes the initial state distribution.
We assume that it consists of N states and that for each state we can observe any of the
M possible symbols.

To construct the three systems Si, i = 1, 2, 3, we assume that they consist of a Markov
Chain with Ni states (N1 = 20, N2 = 10, and N3 = 10) and randomly generate a state
transition probability matrix Pi = [pi

kl], k, l = 1, 2, . . . , Ni. Furthermore, we randomly
generate the parameters µi

k, k = 1, 2, . . . , Ni, so that the exponentially distributed sojourn
time for state k has mean 1/µi

k. However, not all real systems are memoryless, therefore,
to make our example more interesting we introduce some “special” states, where state
transitions out of such states are not made according to the state transition probability but
rather through the set of rules we describe next.

For S1, we assume that states 1, . . . , 5 are special states defined by the following rules:

• State 1: System stays at state 1 for either 1 or 3 consecutive, exponentially distributed
sojourn time intervals, each with mean 1/µ1

1. Then it jumps to state 10.

• State 2: System stays at state 2 a deterministic sojourn time interval of length 2/µ1
2.

Then it jumps to state n according to the state visited before arriving at state 2,
denoted by S−1:

n =
{

15 if S−1 ∈ {1, . . . , 10}
4 if S−1 ∈ {11, . . . , 20} (5.1)

• State 3: System stays at state 3 for either 3 or 5 consecutive sojourn time intervals,
each exponentially distributed with mean 1/µ1

3. Then it transfers according to state
transition probability matrix P1.

47

• State 4: System stays at state 4 for either 4 or 1 exponentially distributed sojourn time
intervals with mean 1/µ1

4. Then it jumps to state n according to the state previously
visited S−1:

n =

6 if S−1 ∈ {1, . . . , 5}
11 if S−1 ∈ {6, . . . , 10}
16 if S−1 ∈ {11, . . . , 15}
1 if S−1 ∈ {16, . . . , 20}

(5.2)

• State 5: System stays at state 5 for a deterministic sojourn interval of length 1/µ1
5

,and then transfers according to the state transition probability matrix P1.

Both S2 and S3 have only 2 special states defined by the following rules:

• State 1: System stays at state 1 or 2 sojourn time interval, each of which is exponen-
tially distributed with mean 1/µi

1, i = 2, 3. Then it transfers to state n according to
the previous state visited:

n =

7 if S−1 ∈ {1, 2}
9 if S−1 ∈ {3}
5 if S−1 ∈ {4, . . . , 10}

(5.3)

• State 2: System stays at state 2 or a deterministic amount of time equal to 1/µi
2, i =

2, 3, and then transfers to state 5.

Using S1, S2 and S3, we generate 9 sample paths (3 from each system) and for each
sample path we estimate the HMM model parameters λj , j = 1, . . . , 9, to maximize the
probability that the jth observed sample path was obtained from λj . This is referred to as
the training problem and is tackled by repeatedly solving what is described as “Problem 3”
in Rabiner [69]. For the purposes of this experiment, we assume that each HHM consists of
N = 6 states. In addition, we assumed that the actual state visited by each of the systems
is not observable. Rather, the observation symbols at each state are the state holding
times. These can generally take any positive values. To determine Bi, the symbol output
probability, we quantize all possible values into M = 64 intervals.

Once we determine the HMM parameters for all sample paths, λi, i = 1, . . . , 9, we use
the similarity measure defined in Rabiner [69] to determine which HMMs and consequently
which sample paths are sufficiently similar so that they can be clustered together. The
similarity measure is defined for any pair of HMMs λi and λj as:

σ(λi, λj) = exp{D(λi, λj)} (5.4)

where

D(λi, λj) =
log Pr(Oj |λi) + log Pr(Oi|λj)− log Pr(Oi|λi)− log Pr(Oj |λj)

2TK
(5.5)

48

σ(i, j) HMM1 HMM2 HMM3 HMM4 HMM5 HMM6 HMM7 HMM8 HMM9
HMM1 1 0.760 0.769 0.776 0.950 0.950 0.798 0.804 0.794
HMM2 0.760 1 0.940 0.949 0.772 0.776 0.837 0.839 0.835
HMM3 0.769 0.940 1 0.947 0.777 0.785 0.850 0.847 0.847
HMM4 0.776 0.949 0.947 1 0.787 0.793 0.847 0.844 0.844
HMM5 0.950 0.772 0.777 0.787 1 0.951 0.799 0.804 0.799
HMM6 0.950 0.776 0.785 0.793 0.951 1 0.815 0.820 0.809
HMM7 0.798 0.837 0.850 0.847 0.799 0.815 1 0.945 0.943
HMM8 0.804 0.839 0.847 0.844 0.804 0.820 0.945 1 0.950
HMM9 0.794 0.835 0.847 0.844 0.799 0.809 0.943 0.950 1

Table 5.1: Similarity measure between HMMs corresponding to each of the 9 sample paths

is what Rabiner [69] called the distance measure. Pr(Oi|λj) is the probability of the obser-
vation sequence Oi, i.e., the sequence of state holding times that corresponds to the sample
path Qi, was generated by HMM λj . For computational convenience, we break any sample
path into K segments of length T and thus compute

log Pr(Oj |λi) =
K∑

k=1

log Pr(Oi
k|λj) (5.6)

where Pr(Oi
k|λj) is the probability of the kth subsequence of sample path i was generated by

HMM λi. Also, note that the similarity measure is symmetric, that is σ(λi, λj) = σ(λj , λi);
a desired property for a good similarity measure.

5.2.2 Experiments Results

In the similarity results shown in Table 5.1, the length of each of the 9 sample path is
10,000 events. In addition, the parameters µi

j , i = 1, 2, 3, j = 1, . . . , Ni are generated such
that 1/µi

j are uniformly distributed between 4 and 50. Sample paths Q1, Q5, and Q6 are
generated by S1. Q2, Q3, and Q4 are generated by S2 while Q7, Q8, and Q9 are generated
by S3.

Finally, we cluster together all sample paths that correspond to HMMs with similarity
measure greater than a threshold value V . Note that V corresponds to the required degree
of similarity for two sample paths to be clustered together. For example, if V = 0.9, then
the similarity measures exceeding V are:

Cluster 1: σ(1, 5), σ(1, 6), σ(5, 6)
Cluster 2: σ(2, 3), σ(2, 4), σ(3, 4)
Cluster 3: σ(7, 8), σ(7, 9), σ(8, 9)

The resulting three clusters correspond to the generative models S1,S2 and S3 respec-
tively. Therefore, HMM has successfully classified all sample paths.

49

5.3 Application of Clustering in Computer Security

5.3.1 Motivation

Computer networks are complex systems which consist of multiple components. The inter-
action between human and computers, between servers and clients, between hardware and
software, all contributes to the resulting complicated hierarchical structure of computer
networks, either viewed physically or logically. Computer security defense, or intrusion
detection in particular, aiming at identifying malicious activities performed by outside at-
tackers or insider abusers by analyzing the behavior of computer networks via observable
audit events, definitely needs the coordination of multiple detection sensors and compo-
nents. This naturally leads to the application of the general framework of modelling and
simulation of multi-resolution complex systems to computer security.

Intrusion activities in order to gain unauthorized access to system resources and file
systems should leave traces at different levels of the system, but not necessarily significant
at all levels. For example, the intrusion activity may appear normal at some levels of
monitoring, and be distinct at another level. Hierarchical structural models are able to
integrate both local and global information to make more accurate judgments.

We propose to apply clustering methods in system modelling for computer security.
This is based on the observations of a hierarchical structure in both security audit data and
user behavior, in which audit events from multiple sources with multiple resolutions are
collected and analyzed. In this setting, clustering may help in characterizing the hierarchical
structure for a better view and understanding on the system behavior, as it can in other
multi-resolution complex systems.

Clustering is an unsupervised classification procedure, where the input data to the
clustering algorithm are unlabelled, so it is not feasible to us to use it directly. Rather, we
need to integrate domain knowledge as much as possible when clustering is introduced into
the security system modelling.

5.3.2 Hierarchy in Computer Security Systems

Hierarchical structures are observed extensively in computer security systems, such as in [3]
and [72]. We believe that both normal and abnormal system behavior should be described
by integrating data from multiple sources at multiple levels.

Multi-resolution audit data

For security monitoring and intrusion detection, audit events of multiple resolution are
collected from multiple sources as following:

• system call traces: collected from operating system kernel. They are the lowest
level host-based audit data, and describe the execution of programs.

50

• network packets: collected from local network. They are the lowest level network-
based audit data, describing the network traffic in and out the host.

• command history data: collected from shell or process table from operating sys-
tem. They reside on the level above the system call traces, describing the observable
behavior of users.

• system events log: a mixture of multi-resolution events, including messages or errors
from applications and/or network protocols.

Multi-level system architecture

Based on the hierarchical structure of audit events, we describe the hierarchical structure
of a multi-level host-based system model. For simplicity, we only consider the setting of a
single host, i.e., we assume that all audit data are coming from a single monitored host.
The five levels from the top to the bottom are host, user, operation, command, and system
call. This structure is briefly illustrated in Fig 5.4, where operation level (not shown) is
overlapping with user level.

Figure 5.4: The hierarchical structure of computer security models

1. Host level: The top level in our architecture. In essence, the behavior of a host
is characterized by three aspects of behavior: program behavior, user behavior and

51

network traffic behavior. In practice, we may observe the following aspects of system
behavior:

• System Configuration: Change of system configuration may be an indication of
anomaly.

• File Integrity: File integrity check provides valuable information on what really
happened on the host

• Traffic Density: Dramatic change of network traffic density may suggest anomaly
activities happening on the system.

• Resource Utilization: For each aspects of system resource such as CPU, memory
and file access, we can record down the density of usage periodically. Using these
records, we can construct a probability distribution of short-term and long-term
behaviors for each of the resources.

• User access statistics: For each user who have access to the host, we can record
the normal usage frequency and time schedule of users, and then construct a
probability distribution over the user ID.

• Process statistics: For one given host, the statistics of process running over a
period of time can be obtained. We can construct a probability distribution over
the process name/group.

• System call statistics: For one given host, the statistics of system calls called
over a period of time can be obtained. For each (or each group) of system calls,
we can then construct the probability distribution over their name/functionality.

The above features are extracted from different levels of audit data. If we describe
the behavior of a host by them and compute a numerical index, then a significant
deviation of this index for a given period of time may result from anomaly behavior.

2. User level: Normally, intrusion is carried out directly by a user or by a process
automatically run from a user’s computer. The data at this level is user history data
of commands and system calls collected on a single host. Sometimes it is difficult to
distinguish two users who have similar work schedules and similar temporary tasks.
So it may be useful to group the users by their main activities, such as the group
for programming, the group for system administration, etc. Users can also be put
into groups according to their proficiency, such as beginning learners, standard users
and innovative experts. Actually, this level sometimes interleaves with the Operation
Level, as we will see below.

3. Operation level: This level is also called activity level. It can be considered as
a sub layer of the user level, or the layer parallel/overlapping with the user level.
When working on a computer, each user may do one or more of the following tasks:
Programming, System administration, Network utilities, Entertainment, Idle, etc.
Normally, users’ activities may interleave with each other, so it is not easy to recognize
each distinct activity stream from a user’s mixed command trace.

4. Command level: This level is equivalent to the program/functionality level, which
is above the system call level and is the basic interface between the user and the host.

52

People suggests that profiling functionality or program execution is more effective
than profiling individual users. The fewer number of functionality profiles are much
more stable than users’ profiles.

5. System call level: This level is also called Module Level, which is the lowest level
of system behavior above the machine code. This level is the interface between the
user application and the kernel of the operating systems. In Linux system, there are
nearly 200 system calls. In our analysis, they each can be treated as a distinct state,
or they can be grouped by their functionality. Statistics or structural models can be
obtained at this level.

With this hierarchical structure in mind, we need clustering for Data Reduction and
Event Correlation, to get representative models for characterizing normal profiles.

5.3.3 Characterizing the Hierarchical Structure

In this section, we discuss three different types of models used in computer security systems
for the purpose of intrusion detection. We argue that the effectiveness of these models rely
on the design of interfaces between high-resolution and low-resolution modules.

Modelling Program Behavior

One way to characterize the system behavior is to concentrate on the program behavior,
because it is the abnormal program execution branches/exceptions that essentially leads to
the unauthorized access or abuse of the system.

To describe program behavior, we need to look into lower level audit data, i.e., the
execution traces of system calls. In this case, system call traces are generated by high-
resolution sensors, while the representative models of programs are of lower resolution.
This corresponds to the interface between “command” and “system call” level as shown in
Fig 5.4. The task here is to summarize the data of system call traces into representative
models of programs.

Various modelling schemes have been proposed to handle this problem, including simply
pattern matching (either fixed-length or variable-length), Markov Chain Models, Decision
Tree, Probabilistic Networks, Machine Learning models, Neural Networks, Hidden Markov
Models, etc.

Modelling User Behavior

Another way to characterize system behavior is to look at the behavior of individual users
based on the fact that it is the users who are interacting with the computer, performing
normal/abnormal activities. This corresponds to the interface between “user” level and

53

“command level”, where the high-resolution view is command history data, and the low-
resolution view is the profile of user behavior.

There is rich information within command history data, such as the time stamp of
the command, command name, switches, and arguments. People usually only look at the
sequence of command names and build models similar to the modelling of program behavior.
However, command history data have their own special characteristics which call for distinct
treatment rather than being treated the same as system call sequences.

Dealing with this set of high-dimensional data is not easy, especially with data fields
of hybrid types. One way to deal with it is to treat each dimension of the information
separately with different models chosen specific for each dimension. After decision results
are generated from each of the dimensions, we integrate them together to form the final
decision. Another way to deal with it is try to define some integrated index to incorporate
all of the information into a single vector for training and testing.

People have proposed modelling user behavior through command history data by differ-
ent models, such as pattern matching, machine learning, Markov models, high-order Markov
models, uniqueness models, etc. There are some inherent difficulties within this data set
that set limitations on the performance of those models in intrusion detection, such as the
high randomness within command history data, concept-drift problem addressing the shift
of behavior over time, etc. A hybrid model taking advantage of both statistical-based com-
ponents and signature-based components may be the possible solution to this problem for
better performance.

Above “user level”, we may add another level, “user group level”. We build this level by
doing clustering on user behavior models, and examine the commonty among users. User
groups can thus be constructed with users of similar background, task domain, proficiency
and working schedules. Such groups are indeed observed in user command history data.
Here clustering is used for getting the representative models for user group.

Actually, we could insert another level, “activity level” above “command level”, where
clustering may be used for extracting the models for different type of user activities. Mod-
els can be built individually for different activities, such as editing documents, checking
email, system configuration and maintenance, entertainment activity, etc., to investigate
the underlying dynamics below the command sequences. These streams of activities may
interleave with each other if viewed from command history data. It remains a question
whether we can find good representative models for those activities.

Modelling Network Traffic Behavior

The third angle of view on the system behavior is through the behavior of network traffic.
There are many network protocols and services running in current computer network setting,
such as http, ftp, telnet, SMTP, SNMP, ICMP, DNS, etc. Without the communications
built by network protocols and the vulnerabilities in the design and implementation of them,
most intrusions could never be carried out. Analyzing the profiles of network traffic data

54

is especially important in dealing with Distributed Denial of Service (DDoS) attack which
has become the most serious threat to Web servers on Internet.

In this context, the high-resolution data are the network packets, and the low-resolution
models are describing the behavior of different network protocols or different network op-
eration scenarios. This interface is not shown in Fig 5.4, but it is critical to the successful
coordination among different computers on the network to defense attacks.

People have proposed different techniques to modelling network traffic data to describe
the normal profiles of network, to support IP Traceback, to detect stepping-stones for DDoS
attack, to characterizing Worm propagation, etc.

5.3.4 Related Work

Clustering has been used in user modelling for anomaly detection. In [52], T. Lane proposes
user modelling based on pattern matching on short segments of command history data. In
this model, frequently used short segments of commands extracted from normal data consti-
tute the normal profiles. For efficiency in both storage and matching, he uses clustering for
data reduction on the patterns stored in normal database. In [58], J. Marin et al. proposed
a hybrid model to profile user behavior by the relative frequency of command usage stored
in vectors. They use k-means clustering for generating the initial reference vector.

Clustering has been shown to help in both data reduction and model representation.
Clustering may also be used for event correlation when events coming from multiple sensors
are gathered together for a comprehensive view on what is going on in the system. In our
study shown next, we propose to use Hidden Markov model as a clustering tool at the
interface between high-resolution audit data and low-resolution audit data.

5.4 Experiments on HMM for Anomaly Detection

5.4.1 Applications of HMM in Computer Security

We have shown that clustering may help in the modelling of system behavior for computer
security, and HMM is a powerful candidate to do the clustering job. So here we will
examine the possible applications of Hidden Markov Models in computer security. Due
to its strong descriptive power, HMM can either be used for modelling user behavior, or
program behavior. In [81], Hidden Markov Models are used for modelling program behavior
through the execution traces of system call sequences and the performance is compared with
some other simple models. The results show that Hidden Markov Models are powerful to
describe the behavior of normal program in the context of anomaly detection, at the cost
of computational burden in training. In [51], T. Lane chooses Hidden Markov Models for
profiling normal user behavior represented by Unix shell command history sequences, where
again HMMs are shown to be able to characterize the complicated structure within user
command sequences.

55

On the other hand, HMM can be used in multiple levels of modelling, depending on the
resolution of view. For example, it can be used for building a model for sample paths which
are mixtures of multiple activities, or it can be built based on a specific activity that are
previously extracted from the sample path.

We have done some experiments where we apply Hidden Markov Models to model the
normal behavior of network traffic log and use this model as the reference to detect any
anomalous behavior in the network log data. Next we will show some considerations during
model construction, and give brief discussions on the experiments.

5.4.2 Model Construction

A set of experiments were performed on SIAC company security log data using Hidden
Markov Models. The purpose of the experiments was to use Hidden Markov Models to
characterize the normal behavior of the system traffic represented by audit event “sample
path”, so that the traffic caused by intrusive activities showing a large diverge from the
normal model will be captured by the clustering procedure.

In SIAC log data, each line is a log event. One connection (such as an http connection)
can generate one or more log events. Most of the connections (more than 99.8%) are http
connections, with small percentage of other events, such as ftp, smap, sendmail, etc.

We have made some necessarily modifications to the HMM to make it more precisely in
describing user behavior through network traffic log data.

1. Determining number of states: The state in our model represents an abstract
relatively stable status of a computer user, corresponding to the users’ main activity
within a given period of time. Viewed from audit data, each state corresponds to dif-
ferent subgroup of events. For example, when user’s current state is “programming”,
the dominant events will be editing/compiling; when the state changes to “surfing
web”, dominant events will be related to HTTP.

2. Two Critical states: We choose “login” as an initial state of the HMM model. The
initial state is the entry state that records some important information of the user,
such as user name, login time, source IP address, login failure times, etc. Among all
the intrusion actions, a large percentage of them are to gain unauthorized root access
into a local computer system, either from a local user account or directly from outside.
So we add a state called “user-to-root” state to provide information about how root
privilege is obtained. In the overall HMM model matching algorithm, we put heavier
weight on the matching score of this state. If a user usually logs in as a supervisor,
then the “user-to-root” state is the same as the initial state.

3. Data Segmentation: To partition the audit events traces into discrete events, we
take into account the fact that different state has different type of “dominant” com-
mands. So we use ”window” concept in our model. For example, if in the last 20
events the type of dominant events has changed from A to B, then we suspect that

56

the state has transited from state A to B. Here we apply two types of windows: time
window and event counter window, which deal with time interval and event counters
respectively.

4. Feature selection: The simplest way is to only record the distribution of different
events in a state. For intrusion detection, this is surely not enough. In order to make
more accurate detection, we suggest to use some rule-based detection techniques to
add more features, Such as command duration time, state duration time (exponential
distributed), overall command number, number of “hot actions” (e.g., access to system
directories, creation and execution of programs, etc), number of access to “access
control” files (e.g., /etc/passwd, .rhosts), etc.

5.4.3 Model Training

From above discussion, we have known that the number of states is pre-determined. Since
we have partitioned the audit data sequences into separate parts, each part with its own
“dominant” events, so it is easy to know which state the user transit to. It means that
the states here are almost sure observable. So the state transition probability and state
duration time can be easily calculated from training data.

For each state record, the distribution of commands can be easily obtained by cal-
culated frequency. For other parameters, such as command duration time, hot actions
number, accessing critical file numbers, we can treat them as Gaussian distribution. This
approximation is reasonable and simple to implement. It should be noted that since most
parameters in HMM have physical meaning, the system manager can set initial values to
these parameters in advance. So the training task will be light-burdened and more efficient.

5.4.4 Calculating Similarity Measure

Since our HMM model has modified a lot from original model, the matching criterion is
not as simple as calculating the probability of the observation sequence by the given model.
Instead, we compute a “suspicious score” for the matching process.

The critical state, i.e., the initial state and “user-to-root” state has higher weights while
other state has lower weights. Each state has its own suspicious rate score, computed by
integrating the score of difference between each parameter and its observation value. Then
we compare the suspicious score of the user with a threshold level. The threshold level is
set to trade off false alarm and missed detections. Each parameter in the record of state is
treated as a Gaussian distributed random variable.

Let J be the “suspicious score” of an HMM model. The model has K states. During
preprocessing, the user’s audit event sequences are divided into N parts, and so he has
N − 1 state transition. We calculate the “suspicious score” by:

J = W1S1 +
N∑

k=2

1
Pi,jWjSk

j

(5.7)

57

where Pi,j is the probability of state transition from state i to state j, Wj is the weight factor
of state j (the “user-to-root” state and initial state have larger Wj), Sk

j is the suspicious
score of state j compared with the kth observed state. For example, if a user’s observed
action sequence is S1S2S4S3S2, then the suspicious score is:

J = W1S1 +
1

P1,2
W2S

2
2 +

1
P2,4

W4S
3
4 +

1
P4,3

W3S
4
3 +

1
P3,2

W2S
5
2 (5.8)

Suppose there are M parameters in state i, each parameter xj , j = 1, . . . , M has expec-
tation εj and variance σj , the observed value of parameter is oj , then Sk

i can be calculated
as:

Sk
i =

M∑

j=1

ωj
(oj − εj)2

σj
(5.9)

where ωj is the weight factor of parameter xj . The weight factors Wj and ωj can be set by
the system manager and be modified from training.

5.4.5 Discussion

SIAC log data contains two parts of data: normal and abnormal. In the abnormal part,
there are some kinds of intrusion attempts within. Our mission is to locate these intrusion
attempts in the abnormal part, with normal data as training data. This set of experiments
are not successful. Here we will discuss why HMM failed in modelling with SIAC data.

1. Insufficient information: In preprocessing, too much information has been ignored.
SIAC data contains mainly two parts of data, http connections and non-http connec-
tions. In normal data, the non-http connections only constitute less than 0.2%, so this
part of data are not significant enough in preprocessing for statistical approximation.
But the most likely intrusion here is in non-http connections, so only dealing with
http connections is not enough.
On the other hand, even for http connections, too much information has been ignored
due to the potential burden due to the complexity of information format.
Furthermore, if this set of log data itself does not contain enough information to dis-
criminate between normal and abnormal behavior, there will be no way to find out
the intrusions.

2. Difficulty in quantization: The preprocessed data of SIAC http connection are
vectors of sequential data, but different terms in the vector have totally different
numerical domain. The last three attributes are of in the range of 1, 2, 3, while the
first four attributes vary from 0 to 106. The vector elements must be quantized into the
same domain. But here it is difficult to do it without a suitable Vector Quantization
method.

58

3. Common problems with statistics based anomaly detection: For statistical
based anomaly detection to be successful, we have some basic assumptions: First, it
requires statistically enough normal behavior data for training to be able to cover the
variance of normal behavior, which sometimes is very difficult to achieve; Second, in
order to find out whether there are intrusions in a segment of test data, the test data
must also be rich enough for statistical based analysis. Otherwise, there will not be
enough statistical information in the test data segment to justify the results.
On the other hand, if we make the test data segment long enough for statistical anal-
ysis, we may be able to only determine whether there are abnormal behaviors in this
data segment, but not able to tell where they are and what kind of intrusion it is. This
part of workload is left for rule-based intrusion detection system or human experts.

5.5 Summary

In this chapter, we have discussed the applications of clustering methods in hierarchical
simulation of complex systems and in system modelling for computer security. We propose
to use clustering techniques between high- and low-resolution modules for the analysis and
simulation of multi-resolution to preserve the statistics fidelity. We demonstrated that
Hidden Markov Model can be an effective clustering tool for this task. Then we shift to
the possible applications of clustering techniques in the domain of computer security based
on the observation of hierarchical structure computer security systems. Three aspects of
behavioral models are discussed with the possible applications of clustering as the important
components between different levels of audit events. We then attempted to use Hidden
Markov Models for the purpose of system modelling for anomaly detection, discussed several
issues related to this problem and possible solutions.

59

Chapter 6

OPTIMIZATION EXAMPLES

In this chapter we will use the results from the concurrent simulation chapter for control and
optimization. We will first use the IPA estimates for performing management functions in
a single node in a communication network. Subsequently, we use concurrent estimation [21]
together with the “surrogate” methodology [35, 32] to perform multi-commodity resource
allocation in the context of mission planning in a Joint Air Operation (JAO) environment.

6.1 Optimal Buffer Control Using SFM-Based IPA Estima-
tors

We consider here an optimization problem for single-node SFMs involving loss volume
and workload levels; both are network-related performance metrics associated with buffer
control or call-admission control. In a typical buffer control problem, for instance, the
optimization problem involves the determination of a threshold (measured in packets or
bytes) that minimizes a weighted sum of loss volume and buffer content. One possible
problem formulation is to determine a threshold C that minimizes a cost function of the
form

JT (C) = Q̄T (C) + R · L̄T (C)

trading off the expected loss rate with a rejection penalty R for the expected queue length.
If a SFM is used instead, then the cost function of interest becomes

J(θ) =
1
T

E[QT (θ)] +
R

T
E[LT (θ)].

In the case of the simple buffer control problem, we are interested in estimating dJT /dθ
based on directly observed (simulated) data. We can then seek to obtain θ∗ such that it
minimizes JT (θ) through an iterative scheme of the form

θn+1 = θn − νnHn(θn, ωSFM
n), n = 0, 1, . . . (6.1)

60

where {νn} is a step size sequence and Hn(θn, ωSFM
n) is an estimate of dJT /dθ evaluated

at θ = θn and based on information obtained from a sample path of the SFM denoted by
ωSFM

n . However, as we saw in Chapter 3, the simple form of Hn(θn, ωSFM
n) also enables us

to apply the same scheme to the original discrete event system:

Cn+1 = Cn − νnHn(Cn, ωDES
n), n = 0, 1, . . . (6.2)

where Cn is the threshold used for the nth iteration and ωDES
n is a sample path of the

discrete event system.

The gradient estimator Hn(θ, ωSFM
n) is the IPA estimator of dJ/dθ based on (3.9) and

(3.10):

Hn(θ, ωSFM
n) =

1
T

∑

k∈Φ(θ)

[ηk(θ)− uk,1(θ)]− R

T
B(θ) (6.3)

evaluated over a simulated sample path ωSFM
n of length T , following which a control update

is performed through (6.1) based on the value of Hn(θ, ωSFM
n). The interesting observation

here is that the same estimator may be used in (6.2) as follows: If a packet arrives and is
rejected, the time this occurs is recorded as τ in Algorithm 1. At the end of the current
busy period, the counter C and timer T are updated. Thus, the exact same expression as
in the right-hand side of (6.3) can be used to update the threshold Cn+1 in (6.2).

Figure 6.1 depicts examples of the application of this scheme to a single-node SFM
under six different parameter settings (scenarios), summarized in Table 6.1. ‘DES’ denotes
curves obtained by estimating JT (C) over different (discrete) values of C, ‘SFM’ denotes
curves obtained by estimating J(θ) over different values of θ, and ‘Opt.Algo.’ represents the
optimization process (6.2), where we maintain real-valued thresholds throughout. The first
three scenarios correspond to a high traffic intensity ρ compared to the remaining three.
For each example, C∗ is the optimal threshold obtained through exhaustive simulation.
In all simulations, an ON-OFF traffic source is used with the number of arrivals in each
ON period geometrically distributed with parameter p and arrival rate α; the OFF period
is exponentially distributed with parameter µ; and the service rate is fixed at β. Thus,
the traffic intensity of the system ρ is α(1

αp)/β(1
αp + 1

µ), where 1
αp is the average length

of an ON period and 1
µ is the average length of an OFF period. The rejection cost is

R = 50. For simplicity, νn in (6.2) is taken to be a constant νn = 5. Finally, in all cases
T = 100, 000. As seen in Fig. 6.1, the threshold value obtained through (6.2) using the
SFM-based gradient estimator in (6.3) either recovers C∗ or is close to it with a cost value
extremely close to JT (C∗); since in some cases the cost function is nearly constant in the
neighborhood of the optimum, it is difficult to determine the actual optimal threshold,
but it is also practically unimportant since the cost is essentially the same. We have
also implemented (6.2) with Hn(Cn, ωDES

n) estimated over shorter interval lengths T =
10, 000 and T = 5, 000, with virtually identical results. Looking at Fig. 6.1, it is worth
observing that determining θ∗ as an approximation to C∗ through off-line analysis of the
SFM would also yield good approximations, further supporting the premise of this chapter
that SFMs provide an attractive modeling framework for control and optimization (not just
performance analysis) of complex networks.

61

Scenario ρ α p µ β C∗

1 0.99 1 0.1 0.1 0.505 7
2 0.99 1 0.05 0.05 0.505 7
3 0.99 2 0.05 0.1 1.01 15
4 0.71 1 0.1 0.1 0.7 13
5 0.71 1 0.05 0.05 0.7 11
6 0.71 2 0.05 0.1 1.4 22

Table 6.1: Parameter settings for six examples

Scenario 2

10

12

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 1

5

7

9

11

13

15

17

19

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 3

15

17

19

21

23

25

27

29

31

33

35

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 4

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

T hr eshol d

DES

SFM

Opt. Algo

Scenario 5

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 6

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Figure 6.1: Optimal threshold determination in an actual system using SFM-based gradient
estimators - Scenarios 1-6

62

6.2 Multi-commodity Resource Allocation

In this section we investigate the problem of mission planning in the context of the Joint
Air Operation (JAO) environment. For this problem we assume that there are Ni type i
aircraft that can be used in any given mission. For simplicity we assume that there are
only two types of aircraft, i = 1 (strike aircraft) or i = 2 (wild weasel). The objective
is to dynamically allocate these aircraft to various missions against a set of predefined
targets. We assume that each target is destroyed probabilistically and the probability is
monotonically increasing with the number of strike aircraft allocated to it. Furthermore,
when destroyed, each target carries a value that indicates its significance. In addition, each
target j is generally defended by a set of nj SAMs that constitute risk for the mission
aircraft. Every destroyed aircraft incurs a cost ci while destroyed SAM sites constitute no
quantifiable benefit. Finally, again for simplicity, we assume that the path that the mission
will follow is the straight line between the aircraft base and the target. The problem is
to dynamically schedule various missions until either all targets are destroyed or there are
not enough aircraft to take up a new mission. The objective is to maximize the expected
value obtained from all destroyed targets minus the cost of lost aircraft. This problem
formulation leads to a non-convex combinatorialy hard problem which we solve using a
“surrogate” methodology which is briefly described next (For more details the reader is
referred to Appendix D or [35, 32]).

6.2.1 Basic Approach for the “Surrogate” Method

We define an optimization problem the general form

min
r∈Ad

Jd(r) = E[Ld(r, ω)] (6.4)

where r ∈ ZN
+ is a decision vector or “state” and Ad represents a constraint set. In a

stochastic setting, let Ld(r, ω) be the cost incurred over a specific sample path ω when
the state is r and Jd(r) = E[Ld(r, ω)] be the expected cost of the system operating under
r. The sample space is Ω = [0, 1]∞, that is, ω ∈ Ω is a sequence of random numbers
from [0, 1] used to generate a sample path of the system. The cost functions are defined
as Ld : Ad × Ω → R and Jd : Ad → R, and the expectation is defined with respect to a
probability space (Ω,=, P) where = is an appropriately defined σ-field on Ω and P is a
conveniently chosen probability measure. In the sequel, ‘ω’ is dropped from Ld(r, ω) and,
unless otherwise noted, all costs will be over the same sample path.

Let the expected cost function Jd(r) is generally nonlinear in r, a vector of integer-
valued decision variables, therefore (6.4) is a nonlinear integer programming problem. One
common method for solving this problem is to relax the integer constraints on all ri so
that they can be regarded as continuous (real-valued) variables and then to apply standard
optimization techniques such as gradient-based algorithms. Let the “relaxed” set Ac contain
the original constraint set Ad and define L̄c : RN

+ × Ω → R to be the cost function over
a specific sample path. The resulting “surrogate” problem then becomes: Find ρ∗ that

63

minimizes the “surrogate” expected cost function Jc : RN
+ → R over the continuous set Ac,

i.e.,
Jc(ρ∗) = min

ρ∈Ac

Jc(ρ) = E[L̄c(ρ)] (6.5)

where ρ ∈ RN
+ , is a real-valued state, and the expectation is defined on the same probability

space (Ω,=, P) as described earlier. Assuming an optimal solution ρ∗ can be determined,
this state must then be mapped back into a discrete vector by some means (usually, some
form of truncation). Even if the final outcome of this process can recover the actual r∗ in
(6.4), this approach is strictly limited to off-line analysis: When an iterative scheme is used
to solve the problem in (6.5) (as is usually the case except for very simple problems of limited
interest), a sequence of points {ρn} is generated; these points are generally continuous states
in Ac, hence they may be infeasible in the original discrete optimization problem. Moreover,
if one has to estimate E[L̄c(ρ)] or ∂E[L̄c(ρ)]

∂ρ through simulation, then a simulation model of
the surrogate problem must be created, which is also not generally feasible. If, on the other
hand, the only cost information available is through direct observation of sample paths of
an actual system, then there is no obvious way to estimate E[L̄c(ρ)] or ∂E[L̄c(ρ)]

∂ρ , since this
applies to the real-valued state ρ, not to the integer-valued actual state r.

Here we adopt a different approach intended to operate on line. In particular, we
still invoke a relaxation such as the one above, i.e., we formulate a surrogate continuous
optimization problem with some state space Ac ⊂ RN

+ and Ad ⊂ Ac. However, at every
step n of the iteration scheme involved in solving the problem, both the continuous and
the discrete states are simultaneously updated through a mapping of the form rn = fn(ρn).
This has two advantages: First, the cost of the original system is continuously adjusted
(in contrast to an adjustment that would only be possible at the end of the surrogate
minimization process); and second, it allows us to make use of information typically needed
to obtain cost sensitivities from the actual operating system at every step of the process.

Initially, we set the “surrogate system” state to be that of the actual system state, i.e.,

ρ0 = r0 (6.6)

Subsequently, at the nth step of the process, let Hn(ρn, rn, ωn) denote an estimate of the
sensitivity of the cost Jc(ρn) with respect to ρn obtained over a sample path ωn of the actual
system operating under allocation rn. Two sequential operations are then performed at the
nth step:

1. The continuous state ρn is updated through

ρn+1 = πn+1[ρn − ηnHn(ρn, rn, ωn)] (6.7)

where πn+1 : RN → Ac is a projection function so that ρn+1 ∈ Ac and ηn is a “step
size” parameter.

2. The newly determined state of the surrogate system, ρn+1, is transformed into an
actual feasible discrete state of the original system through

rn+1 = fn+1(ρn+1) (6.8)

64

where fn+1 : Ac → Ad is a mapping of feasible continuous states to feasible discrete
states which must be appropriately selected as will be discussed later.

One can recognize in (6.7) the form of a stochastic approximation algorithm (e.g., [50])
that generates a sequence {ρn} aimed at solving (6.5). However, there is an additional
operation (6.8) for generating a sequence {rn} which we would like to see converge to r∗

in (6.4). It is important to note that {rn} corresponds to feasible realizable states based
on which one can evaluate estimates Hn(ρn, rn, ωn) from observable data, i.e., a sample
path of the actual system under rn (not the surrogate state ρn). We can therefore see that
this scheme is intended to combine the advantages of a stochastic approximation type of
algorithm with the ability to obtain sensitivity estimates with respect to discrete decision
variables. In particular, the sensitivity estimation methods studied in Chapter 3 are ideally
suited to meet this objective.

6.2.2 Optimization Algorithm

In this section we simply summarize the algorithm used to solve the basic problem in (6.4)
(For more details refer to [35, 32]).

Algorithm 2

Step 0. Initialize ρ0 = r0 and perturb ρ0 to have all components non-integer.

For any iteration n = 0, 1, . . .

Step 1. Determine S(ρn) [using the construction of Theorem 3.1 [32]; recall that this set
is generally not unique].

Step 2. Select fn ∈ Fρn
such that rn = arg minr∈N (ρn) ‖r − ρn‖ = fn(ρn) ∈ N (ρn).

Step 3. Operate at rn to collect Ld(ri) for all ri ∈ S(ρn) [using Concurrent Estimation or
some form of Perturbation Analysis; or, if feasible, through off-line simulation].

Step 4. Evaluate ∇Lc(ρn).

Step 5. Update the continuous state: ρn+1 = πn+1[ρn − ηn∇Lc(ρn)].

Step 6. If some stopping condition is not satisfied, repeat Steps 1-6 for n + 1. Else, set
ρ∗ = ρn+1.

Step 7. Obtain the optimal (or the near optimal) state as one of the neighboring feasible
states in the set N (ρ∗).

Note that for separable cost functions, Steps 1-6 can be replaced by

Step 1. Select fn such that rn = arg minr∈N (ρn) ‖r − ρn‖ = fn(ρn) ∈ N (ρn).

65

Step 2. Operate at rn to evaluate ∇Lc(ρn) using Perturbation Analysis.

Step 3. Update the continuous state: ρn+1 = πn+1[ρn − ηn∇Lc(ρn)].

Step 4. If some stopping condition is not satisfied, repeat Steps 1-4 for n + 1. Else, set
ρ∗ = ρn+1.

Note that ideally we would like to have ∇Jc(ρn) be the cost sensitivity driving the
algorithm. Since this information is not always available in a stochastic environment and
since Jc(ρn) = E[L̄c(ρn, ω)], the stochastic approximation algorithm uses ∇L̄c(ρn, ω) as an
estimate and under some standard assumptions on the estimation error εn where

∇Jc(ρn) = ∇L̄c(ρn, ω) + εn

the convergence is guaranteed. In order to get ∇L̄c(ρn, ω), however, one needs to consider
all possible selection sets. In this algorithm we utilize only one of those selection sets
and approximate ∇L̄c(ρn, ω) with ∇Lc(ρn, S(ρn), ω). This approximation introduces yet
another error term ε̄n where

∇L̄c(ρn, ω) = ∇Lc(ρn, S(ρn), ω) + ε̄n

Note that this error term ε̄n exists regardless of stochasticity, unless the cost function Ld(.)
is separable (all selection sets will yield the same sensitivity for separable cost functions).
We can combine error terms to define εn = ε̄n + εn and write

∇Jc(ρn) = ∇Lc(ρn, S(ρn), ω) + εn

If the augmented error term εn satisfies the standard assumptions, then convergence of the
algorithm to the optimal follows.

6.2.3 Multicommodity Resource Allocation Problems

An interesting class of discrete optimization problems arises when Q different types of
resources must be allocated to N users. The corresponding optimization problem we would
like to solve is

min
r∈Ad

J(r)

where r = [r1,1, . . . , r1,Q, · · · , rN,1, . . . , rN,Q] is the allocation vector and ri,q is the number
of resources of type q allocated to user i. A typical feasible set Ad is defined by the capacity
constraints

N∑

i=1

ri,q ≤ Kq, q = 1, . . . , Q

and possibly additional constraints such as βi ≤ ri,q ≤ γi for i = 1, . . . , N . Aside from
the fact that such problems are of higher dimensionality because of the Q different resource
types that must be allocated to each user, it is also common that they exhibit multiple local
minima. Examples of such problems are encountered in mission planning that involve N

66

0
2

4
6

8
10

0

2

4

6

8

10
−200

−150

−100

−50

0

50

100

150

Resource Type 1Resource Type 2

R
ew

ar
d

Figure 6.2: A typical reward function Ji(ri,1, ri,2).

missions to be simultaneously performed, each mission i requiring a “package” of resources
(ri,1, . . . , ri,Q) in order to be carried out. The natural trade-off involved is between carrying
out fewer tasks each with a high probability of success (because each task is provided
adequate resources) and carrying out more tasks each with lower probability of success.

The “surrogate problem” method provides an attractive means of dealing with these
problems with local minima because of its convergence speed. Our approach for solving these
problems is to randomize over the initial states r0 (equivalently, ρ0) and seek a (possibly
local) minimum corresponding to this initial point. The process is repeated for different,
randomly selected, initial states so as to seek better solutions. For deterministic problems,
the best allocation seen so far is reported as the optimal. For stochastic problems, we adopt
the stochastic comparison approach in [36]. The algorithm is run from a randomly selected
initial point and the cost of the corresponding final point is compared with the cost of the
“best point seen so far”. The stochastic comparison test in [36] is applied to determine
the “best point seen so far” for the next run. Therefore, the surrogate problem method
can be seen as a complementary component for random search algorithms that exploits the
problem structure to yield better generating probabilities (as discussed in [36]), which will
eliminate (or decrease) the visits to poor allocations enabling them to be applied on-line.

In what follows we consider a problem with N = 16, Q = 2, and K1 = 20, K2 = 8. We
then seek a 32−dimensional vector r = [r1,1, r1,2, · · · , r16,1, . . . , r16,2] to maximize a reward

67

function of the form

J(r) =
16∑

i=1

Ji(r) (6.9)

subject to
N∑

i=1

ri,1 ≤ 20,
N∑

i=1

ri,2 ≤ 8

The reward functions Ji(r) we will use in this problem are defined as

Ji = ViP
0
i (r)− C1ri,1P

1
i (r)− C2ri,2P

2
i (r) (6.10)

In (6.10), Vi represents the “value” of successfully completing the ith task and P 0
i (r) is the

probability of successful completion of the ith task under an allocation r. In addition, Cq is
the cost of a resource of type q, where q = 1, 2, and P q

i (r) is the probability that a resource
of type q is completely consumed or lost during the execution of the ith task under an
allocation r. A representative example of a reward function for a single task with Vi = 150
is shown in Fig. 6.2. The cost values of resource types are C1 = 20 and C2 = 40, and the
values for tasks we will use in this problem range between 50 and 150.

The surrogate method is executed from random initial points and the results for some
runs are shown in Fig. 6.3. Note that due to local maxima, some runs yield suboptimal
results. However, in all cases convergence is attained extremely fast, enabling us to repeat
the optimization process multiple times with different initial points in search of the global
maximum. Although it is infeasible to identify the actual global maximum, we have com-
pared our approach to a few heuristic techniques and pure random search methods and
found the “surrogate problem” method to outperform them. To demonstrate the effective-
ness of the approach we have developed an “applet” for the scenario described above which
can be accessed at http://vita.bu.edu/cgc/alpha/index.htm.

68

0

50

100

150

200

250
1 3 5 7 9 11 13 15 17 19

Iterations

T
o

ta
l R

ew
ar

d

Figure 6.3: Algorithm convergence under different initial points.

69

Chapter 7

CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

In this section, we summarize the main findings, lessons learned, and recommendations for
future directions that have resulted from this project.

Model abstraction through fluid simulation: Fluid models (FM) are considered as
efficient abstract modeling paradigms that can either approximate the dynamics of complex
discrete-event systems or constitute primary models in their own right. In FM, the state
of the system is described by discrete as well as continuous type variables. Furthermore,
the system dynamics are both, time-driven and event-driven, therefore FM fall in the class
of hybrid simulation models, which can be used to model a fairly broad class of systems
including battle engagements, communication networks, manufacturing systems and many
more.

For performance evaluation, when a FM is used to approximate the dynamics of a
discrete-event system the important tradeoff is efficiency vs. accuracy. This tradeoff relates
to the resolution (i.e., number of events to be aggregated together) of the fluid model used
which is thoroughly investigated. On the other hand, FM can be used for the control
and optimization of various systems. In this case, a FM may identify the solution of an
optimization problem based on a model which captures only those features of the underlying
“real” system that are needed to lead to the right solution, but not necessarily estimate
the corresponding optimal performance with accuracy. Even if the exact solution cannot be
obtained by such “lower-resolution” models, one can still obtain near-optimal points that
exhibit robustness properties with respect to certain aspects of the model they are based
on. This property of FM is very promising and deserves further investigation.

Concurrent simulation: One of the accomplishments of this project includes signifi-
cant breakthroughs in the area of sample derivative estimation for discrete-event systems.
In this context, we use a Stochastic Fluid Models (SFM) to approximate the dynamics of the
system. Based on this approximation, we derive the “structure” of the sample derivatives of
interest which turns out to be unbiased and nonparametric. Finally, we evaluate the sample

70

derivatives from observations on the sample path of the discrete-event system (simulated or
actual system). Note that several attempts to derive similar sensitivity estimates directly
from the discrete-event system are often biased.

The sample derivative analysis is promising and can find applications in several areas
such as communication systems, manufacturing systems etc. In the context of communica-
tion networks, it is possible to devise extensions to multiple flow classes that can be used
for differentiating traffic classes with different Quality-of-Service (QoS) requirements. On-
going research has already led to very encouraging results, reported in [17, 16, 15], involving
IPA estimators and associated optimization for flow control purposes in multi-node models.
Furthermore, extensions to networks of SFMs are underway.

Model abstraction using neural networks: The metamodeling procedure we have
studied combines simulation of a complex system with the process of training a neural
network to become a surrogate model of this system. This exploits the ability of a neural
network to act as a universal function approximators. However, if a neural net is to ad-
equately learn the functional relationship between the inputs and outputs of a simulation
model it requires a significant number of input/output pairs. Since such information can
only be obtained through simulation, it implies that the training phase of the neural network
will be rather long. For this reason, we investigate the use of sensitivity information (ex-
tracted through some concurrent simulation technique) in the training of neural networks.
Our preliminary results indicate that the use of sensitivity information may significantly
reduce the number of required input/output training pairs.

The use of sensitivity information during training of neural networks creates several
issues that need to be addressed and are part of our future plans. First, the addition of the
derivative error in (4.9) makes the training objective function more complex. One problem
that has been observed during our experiments is that this addition may create several
local minima and as a result convergence issues may arise. Furthermore, the importance
associated with the derivative errors (i.e., parameter β) needs to be further investigated.
As mentioned earlier, this parameter may be critical to the quality of the approximation as
well as the convergence of the training algorithm.

Hierarchical simulation and statistical fidelity: We have investigated the inter-
facing of high- and low-resolution models in the context of hierarchical simulation. Simple
averaging of the output data from a high-resolution simulator to generate input data for
a low-resolution simulator is inadequate and occasionally dramatically erroneous. There-
fore, to maintain the statistical fidelity, high-resolution output data should be classified into
groups that match underlying patterns or features of the system behavior before passing
group averages to the low-resolution modules. In an effort to automate the interfacing
procedure, we have explored various clustering tools including neural networks and hid-
den Markov models (HMMs). We demonstrated that HMM is an effective clustering tool
especially for problems with high-dimensional input spaces (e.g., sample path clustering).

Sample path clustering can also find applications in areas other than statistical fidelity
preservation. For example, we have investigated the HMM in the domain of computer secu-
rity based on the observation that computer security systems have a hierarchical structure.

71

Three aspects of behavioral models are discussed with the possible applications of clustering
as the important components between different levels of audit events. We then attempted
to use HMMs for the purpose of system modelling for anomaly detection. This approach
seems promising and we believe that it deserves further investigation.

72

Appendix A

PROOFS

A.1 Proof of (2.3)

Assume x0 = 0, y0 = 0 and a0 = 0. From Equation (2.2),

yn+1 = max(yn + an − h, an)
= max(yn−1 + an + an−1 − 2h, an + an−1 − h, an)

=
...

= max

{[
y0 +

n∑

i=0

an−i − (n + 1)h

]
, max

0≤j≤n
(

j∑

i=0

an−i − jh)

}

= max
0≤j≤n

(
j∑

i=0

an−i − jh

)
(by y0 = 0) . (A.1)

We do not give the induction proof due to the space limitation. Handling Equation (2.1)
in the same way, we have

xn+1 = max

[
max

0≤j≤n

(
j∑

i=0

an−i − jh

)
− h, 0

]
. (A.2)

Combining Equation (A.1) and (A.2), we get

xn+1 = max(yn+1 − h, 0) . (A.3)

Given Eqs. (2.1) and (A.3), we can derive

max(yn+1 − h, 0) = max(xn + an − h, 0), ∀n > 0 .

So
xn = yn+1 − an ,

and
Ex = Ey − Ea .

73

A.2 Proof of (2.12)

Fre =
1
h

h∑

k=1

Ee2
k

=
V arX

h3

h∑

k=1

h∑

j=1,j 6=k

h∑

i=1,i6=k

(
1 + ρ|i−j| − ρ|k−i| − ρ|k−j|

)

=
V arX

h3

h∑

k=1

(h− 1)2 +

h∑

j=1,j 6=k,i=j

ρ|i−j|

 +

V arX

h3

h∑

k=1

h∑

j=1,j 6=k

h∑

i=1,i 6=k,i6=j

ρ|i−j|

−V arX

h3

h∑

k=1

h∑

j=1,j 6=k

h∑

i=1,i6=k

(
ρ|k−i| + ρ|k−j|

)

= Fun + B −A , (A.4)

where B and A denote the 2nd and 3rd item in RHS of Equation (A.4) respectively.

B =
V arx

h3

h∑

k=1

h∑

j=1

(
h∑

i=1

ρ|i−j| + ρ|k−j| − 1

)
−

(
h∑

i=1

ρ|i−k| − 2

)

=
V arx

h3

(h− 2)

h∑

j=1

h∑

i=1

ρ|i−j| − h(h− 2)

=
V arx

h3
(h− 2)

h∑

j=1

h∑

i=1,i 6=j

ρ|i−j| .

A =
V arx

h3

h∑

k=1

(h− 1)

h∑

i=1,i6=k

ρ|k−i| + (h− 1)
h∑

j=1,j 6=k

ρ|k−j|

=
2V arx

h3
(h− 1)

h∑

j=1

h∑

i=1,i6=j

ρ|i−j| . (A.5)

Let

C = A−B

= 2
V arx

h2

h−1∑

i=1

(h− i)ρi . (A.6)

So
Fre = Fun − C . (A.7)

74

Appendix B

Perturbation Analysis for On-Line
Control and Optimization of
Stochastic Fluid Models

Christos G. Cassandras, Yorai Wardi, Benjamin Melamed, Gang Sun, Christos G.
Panayiotou1

To appear in the IEEE Transactions on Automatic Control

Abstract

This paper uses Stochastic Fluid Models (SFM) for control and optimization (rather than
performance analysis) of communication networks, focusing on problems of buffer control.
We derive gradient estimators for packet loss and workload related performance metrics
with respect to threshold parameters. These estimators are shown to be unbiased and
directly observable from a sample path without any knowledge of underlying stochastic
characteristics, including traffic and processing rates (i.e., they are nonparametric). This
renders them computable in on-line environments and easily implementable for network
management and control. We further demonstrate their use in buffer control problems
where our SFM-based estimators are evaluated based on data from an actual system.

1Christos G. Cassandras, Gang Sun, and Christos G. Panayiotou are with the Dept. of Manufacturing
Engineering, Boston University, Brookline, MA 02446 (cgc@bu.edu,gsun@bu.edu, panayiot@bu.edu). Their
work was supported in part by the National Science Foundation under grants EEC-95-27422 and ACI-98-
73339, by AFOSR under contract F49620-98-1-0387, by the Air Force Research Laboratory under contract
F30602-99-C-0057 and by EPRI/ARO under contract WO8333-03. Yorai Wardi is with the School of Electri-
cal Engineering, Georgia Institute of Technology, Atlanta, GA (wardi@ee.gatech.edu). Benjamin Melamed
is with the Dept. of MSIS, Rutgers University, Piscataway, NJ 08854-8054 (melamed@rbs.rutgers.edu). The
work of the second and third authors was supported in part by the National Science Foundation under grant
DMI-0085659 and by DARPA under contract F30602-00-2-0556.

75

B.1 Introduction

A natural modeling framework for packet-based communication networks is provided through
queueing systems. However, the huge traffic volume that networks are supporting today
makes such models highly impractical. It may be impossible, for example, to simulate at
the packet level a network slated to transport packets at gigabit-per-second rates. If, on the
other hand, we are to resort to analytical techniques from classical queueing theory, we find
that traditional traffic models, largely based on Poisson processes, need to be replaced by
more sophisticated stochastic processes that capture the bursty nature of realistic traffic;
in addition, we need to explicitly model buffer overflow phenomena which typically defy
tractable analytical derivations.

An alternative modeling paradigm, based on Stochastic Fluid Models (SFM), has been
recently considered for the purpose of analysis and simulation. Introduced in [4] and later
proposed in [48] for the analysis of multiplexed data streams and network performance [25],
SFMs have been shown to be especially useful for simulating various kinds of high-speed
networks [77], [47], [49], [62], [56], [86], [79]. The fluid-flow worldview can provide either
approximations to queueing-based models or primary models in their own right. In any
event, its justification rests on a molecular view of packets in moderate-to-heavy loads over
high-speed transmission links, where the effect of an individual packet or cell on the entire
traffic process is virtually infinitesimal, not unlike the effect of a water molecule on the
water flow in a river.

The efficacy of a SFM rests on its ability to aggregate multiple events. For example, a
discrete event simulation run of an ATM link operating at 622 Megabits-per-second may
have to process over a million events per second. On the other hand, if traffic arrives from
the source at rates that are piecewise-constant functions of time, then a simulation run
would process only one event per rate change. Thus, 30 rate changes per second (as in
certain video encoders) may require the processing of only 30 events per second. In effect,
the SFM paradigm allows the aggregation of multiple events, associated with the movement
of individual packets/cells over a time period of a constant flow rate, into a single event
associated with a rate change. It foregoes the identity and dynamics of individual packets
and focuses instead on the aggregate flow rate.

For the purpose of performance analysis with Quality of Service (QoS) requirements, the
accuracy of SFMs depends on traffic conditions, the structure of the underlying system, and
the nature of the performance metrics of interest. By foregoing the identity of individual
packets, the SFM paradigm is more suitable for network-related measures, such as buffer
levels and packet loss volumes, rather than packet-related measures such as sojourn times
(although it is still possible to define fluid-based sojourn times [80]). A QoS metric that
depends on the identity of certain packets, for example, cannot be obviously captured
by a fluid model. Moreover, some metrics may depend on higher-order statistics of the
distributions of the underlying random variables involved, which a fluid model may not be
able to accurately capture.

In this paper, our goal is to explore the use of SFMs for the purpose of control and

76

optimization rather than performance analysis. In this case, it is reasonable to expect
that the solution of an optimization problem can be identified through a model which
captures only those features of the underlying “real” system that are needed to lead to the
right solution, even though the corresponding optimal performance may not be accurately
estimated. Even if the exact solution cannot be obtained by such “lower-resolution” models,
one can still obtain near-optimal points that exhibit robustness with respect to certain
aspects of the model they are based on. Such observations have been made in several
contexts (e.g., [63]), including recent results related to SFMs reported in [60] where a
connection between the SFM and queueing-system-based solution is established for various
optimization problems in queueing systems.

With this in mind, we consider here optimization problems for single-node SFMs in-
volving loss volume and workload levels; both are network-related performance metrics
associated with buffer control or call-admission control. In a typical buffer control problem,
for instance, the optimization problem involves the determination of a threshold (measured
in packets or bytes) that minimizes a weighted sum of loss volume and buffer content. As
the motivating example presented in Section 2 illustrates, a solution of this problem based
on a SFM gives a close approximation to the solution of the associated queueing model.
Since solving such problems usually relies on gradient information, estimating the gradient
of a given cost function with respect to the aforementioned threshold parameters in a SFM
becomes an essential task. Perturbation Analysis (PA) methods [41], [20] are therefore suit-
able, if appropriately adapted to a SFM viewed as a discrete-event system. Liu and Gong
[57], for example, have used PA to analyze an infinite-capacity SFM, with incoming traffic
rates as the parameters of interest. In this paper we show that Infinitesimal Perturbation
Analysis (IPA) yields remarkably simple sensitivity estimators for packet loss and workload
metrics with respect to threshold or buffer size parameters. These estimators also turn out
to be nonparametric in the sense that they are computable from data directly observable
along a sample path, requiring no knowledge of the underlying probability law, including
distributions of the random processes involved, or even parameters such as traffic or pro-
cessing rates. In addition, the estimators obtained are unbiased under very weak structural
assumptions on the defining traffic processes. Therefore, the IPA gradient estimators that
we derive can be readily used for on-line control purposes to perform periodic network
management functions in order to guarantee negotiated QoS parameters and to improve
performance. For instance, a network can monitor its relative loss rate and mean buffer
contents for a period of time, and then adjust admission parameters, provision transmission
capacities, or reassign threshold levels in order to improve performance. Such management
functions have not been standardized, and typically are performed in ad-hoc ways by moni-
toring performance levels. Aside from solving explicit optimization problems, IPA gradient
estimators simplify the implementation of sensitivity analysis.

The contributions of this paper are as follows. First, we consider a single-node SFM
and derive IPA gradient estimators for performance metrics related to loss and workload
levels with respect to threshold parameters (equivalently, buffer sizes). One can derive
such estimators by either (a) considering the finite difference of a performance metric as
a function of the finite difference of a parameter and then use explicit limit arguments to
obtain an unbiased estimate of the performance metric derivative, or (b) deriving the sample

77

derivative for the performance metric involved, and then proving that it indeed yields an
unbiased estimate. The former approach provides clear insights into the dynamic process
of generation and propagation of perturbations, which is very helpful in understanding
how to extend the approach to multiple fluid classes and multiple nodes. In addition, it
requires no technical conditions on the traffic processes or the sample functions involved.
However, this approach is tedious, even for a simple single-node model. The latter approach
is simpler and more elegant, at the expense of some mild technical conditions needed to
justify the evaluation of the sample derivative. It requires, however, some results from
the first approach in order to prove unbiasedness of the derived estimators. Thus, in this
paper, we start with the former approach, and then show that the estimators derived are
equivalent to the latter, which we subsequently adopt. Based on these estimators, we
also present simple algorithms for implementing them on line, taking advantage of their
nonparametric nature.

The second contribution of the paper is to make use of the IPA gradient estimators
derived to tackle buffer control as an optimization problem. In particular, we seek to de-
termine the threshold value that minimizes a given performance metric. Packet-by-packet
buffer control can be applied after the session admission decision is made in order to dy-
namically adjust network resources so as to minimize some cost based on the promised
QoS. We use a standard gradient-based stochastic optimization scheme, where we estimate
the gradient of the performance function with respect to the threshold parameter on the
SFM; however, due to the simplicity of this gradient estimator, we evaluate it based on data
observed on a sample path of the actual (discrete-event) system. Thus, we use the SFM
only to obtain a gradient estimator; the associated value at any operating point is obtained
from real system data.

The paper is organized as follows. First, in Section 2, we motivate our approach with
a buffer control problem in the SFM setting and show the application of IPA to it. In
Section 3, we describe the detailed SFM setting and define the performance metrics and
parameters of interest. In Section 4, we derive IPA estimators for the sensitivities of the
expected loss rate and workload with respect to threshold parameters (equivalently, buffer
sizes) and show their unbiasedness. This is first demonstrated by a direct approach based
on finite differences. The IPA approach is then generalized by evaluating sample derivatives
(at the expense of introducing some mild technical conditions); these are shown to provide
unbiased performance derivative estimators which are of nonparametric nature. Algorithms
for implementing the derivative estimators obtained are also provided. In Section 5, we
show how the SFM-based derivative estimates can be used on line using data from the
actual system (not the SFM) in order to solve buffer control problems. Finally, in Section
6 we outline a number of open problems and future research directions motivated by this
work.

B.2 A Motivating Example: Threshold-Based Buffer Control

This section presents a motivating example of buffer control in the setting of both a queueing
model and a SFM and then compares the two. Consider a network node where buffer control

78

C

Figure B.1: Buffer control in a single node

at the packet level takes place using a simple threshold-based policy: when a packet arrives
and the queue length is below a given amount C, it is accepted; otherwise it is rejected.
Let L̄(C) denote the expected loss rate, i.e., the expected rate of packet overflow at steady
state, and let Q̄(C) denote the mean queue length when the threshold is C. We then define
the cost function

J(C) = Q̄(C) + R · L̄(C), (B.1)

where R is a penalty associated with rejecting a packet. Thus, J(C) captures the tradeoff
between providing satisfactory service (low delay) and rejecting too many packets. Since,
arguably, the notion of steady state is hard to justify in many networks, and since control
decisions need to be made periodically or in response to apparent adverse network condi-
tions, a more realistic performance measure is one where L̄(C) and Q̄(C) are replaced by
L̄T (C) and Q̄T (C), the expected loss rate and mean queue length, respectively, over the
time-interval [0, T]. We then consider

JT (C) = Q̄T (C) + R · L̄T (C) (B.2)

to be the cost function of interest. Care must be taken in defining the above expectations
over a finite time-horizon, since they generally depend on the initial conditions; for the time
being, we shall assume that the queue is empty at time t = 0, and revisit this point later.
Figure B.1 depicts the queueing system under consideration.

The packet arrival process is modeled as an ON-OFF source so that packets arrive at a
peak rate α during an ON period, followed by an OFF period during which no packets arrive.
The packet processing rate is β. For the example used here and illustrated in Fig. B.1, the
number of arrivals in each ON period is geometrically distributed with parameter p =
0.05 and arrival rate α = 2; the OFF period is exponentially distributed with parameter
µ = 0.1; and the service rate is β = 1.01. Thus, the traffic intensity of the system is
α(1

αp)/β(1
αp + 1

µ) = 0.99, where 1
αp is the average length of an ON period and 1

µ is the average
length of an OFF period. The cost function JT (C) in this problem is piecewise constant,
hence gradient-based algorithms cannot be used. However, by exhaustively simulating this
queueing system and averaging over 25 sample paths of length T = 100, 000 time units and
estimating JT (C) over different discrete values of C, we obtained the curve labeled ‘DES’
in Fig. B.2, using a rejection penalty R = 50. One can see that the optimal threshold value
in this example is C∗ = 15.

79

15

17

19

21

23

25

0 5 10 15 20 25 30 35 40 45

Threshold

C
o

st

DES

SFM

Opt. Algo

Figure B.2: Cost v. threshold comparison for DES and SFM

Next, we adopt a simple SFM for the same system, treating packets as “fluid”. During
an ON period, the fluid volume in the buffer, x(t), increases at rate α−β (we assume α > β,
otherwise there would be no buffer accumulation), while during an OFF period it decreases
at a rate β. The cost function in this model is

JSFM
T (θ) = Q̄SFM

T (θ) + R · L̄SFM
T (θ) (B.3)

where θ ∈ R+ is the threshold used to reject incoming fluid when the buffer fluid volume
reaches level θ. The corresponding expected loss rate and mean buffer fluid volume over
the time-interval [0, T] are denoted by L̄SFM

T (θ) and Q̄SFM
T (θ), respectively. Simulating

this model under the same ON-OFF conditions as before over many values of θ results in
the curve labeled “SFM” in Fig. B.2. The important observation is that the two optima
are close, whereas the difference in the actual cost estimates can be substantial (especially
for a lightly loaded system). In fact, θ∗ = 13 and JSFM

T (13) = 17.073, as compared to
JT (13) = 18.127 and the optimal JT (C∗) = JT (15) = 18.012.

Based on this observation, we are motivated to study means for efficiently identifying
solutions to problems formulated in a SFM setting. It is still difficult to obtain analytical
solutions, however, since expressions for Q̄SFM

T (θ) and L̄SFM
T (θ) are unavailable, unless the

arrival and service processes in the actual system are very simple. Therefore, one needs to
resort to iterative methods such as stochastic approximation algorithms (e.g., [50]), which
are driven by estimates of the gradient of a cost function with respect to the parameters of
interest.

In the case of the simple buffer control problem above, we are interested in estimating
dJT /dθ based on directly observed (simulated) data. We can then seek to obtain θ∗ such
that it minimizes JT (θ) through an iterative scheme of the form

θn+1 = θn − νnHn(θn, ωSFM
n), n = 0, 1, . . . (B.4)

where {νn} is a step size sequence and Hn(θn, ωSFM
n) is an estimate of dJT /dθ evaluated

at θ = θn and based on information obtained from a sample path of the SFM denoted by

80

θ

x(t)

α(t)

γ(t)

δ(t)

β(t)

Figure B.3: The basic Stochastic Fluid Model (SFM)

ωSFM
n . However, as we will see, the simple form of Hn(θn, ωSFM

n) to be derived also enables
us to apply the same scheme to the original discrete event system:

Cn+1 = Cn − νnHn(Cn, ωDES
n), n = 0, 1, . . . (B.5)

where Cn is the threshold used for the nth iteration and ωDES
n is a sample path of the discrete

event system. In other words, analyzing the SFM provides us with the structure of a gradient
estimator whose actual value can be obtained based on data from the actual system. In
Fig. B.2, the curve labeled “Opt.Algo.” corresponds to this process and illustrates how one
can indeed recover the optimal threshold C∗ = 15.

B.3 The Stochastic Fluid Model (SFM) Setting

The SFM setting is based on the fluid-flow worldview, where “liquid molecules” flow in
a continuous fashion. The basic SFM, used in [80] and shown in Figure 3, consists of a
single-server (spigot) preceded by a buffer (fluid storage tank), and it is characterized by
five stochastic processes, all defined on a common probability space (Ω,F , P) as follows:

• {α(t)}: the input flow (inflow) rate to the SFM,

• {β(t)}: the service rate, i.e., the maximal fluid discharge rate from the server,

• {δ(t)}: the output flow (outflow) rate from the SFM, i.e., the actual fluid discharge
rate from the server,

• {x(t)}: the buffer occupancy or buffer content, i.e., the volume of fluid in the buffer,

• {γ(t)}: the overflow (spillover) rate due to excessive incoming fluid at a full buffer.

The above processes evolve over a time interval [0, T] for a given fixed T > 0. The
inflow process {α(t)} and the service-rate process {β(t)} are assumed to be right-continuous
piecewise constant, with 0 ≤ αmin ≤ α(t) ≤ αmax < ∞ and 0 ≤ βmin ≤ β(t) ≤ βmax < ∞.
Let θ denote the size of the buffer, which is the variable parameter we will concentrate
on for the purpose of IPA. The processes {α(t)} and {β(t)}, along with the buffer size θ,
define the behavior of the SFM. In particular, they determine the buffer content, x(θ; t), the
overflow rate γ(θ; t), and the output flow δ(θ; t). The notational dependence on θ indicates

81

that we will analyze performance metrics as functions of the given θ. We will assume that
the real-valued parameter θ is confined to a closed and bounded (compact) interval Θ; to
avoid unnecessary technical complications, we assume that θ > 0 for all θ ∈ Θ.

The buffer content x(θ; t) is determined by the following one-sided differential equation,

dx(θ; t)
dt+

=

0, if x(θ; t) = 0 and α(t)− β(t) ≤ 0,
0, if x(θ; t) = θ and α(t)− β(t) ≥ 0,
α(t)− β(t),otherwise

(B.6)

with the initial condition x(θ; 0) = x0 for some given x0; for simplicity, we set x0 = 0
throughout the paper. The outflow rate δ(θ; t) is given by

δ(θ; t) =
{

β(t), if x(θ; t) > 0,
α(t), if x(θ; t) = 0,

(B.7)

where we point out that if we allow θ = 0, then δ(θ; t) = min{α(t), β(t)}. The overflow
rate γ(θ; t) is given by

γ(θ; t) =
{

max{α(t)− β(t), 0}, if x(θ; t) = θ,
0, if x(θ; t) < θ.

(B.8)

This SFM can be viewed as a dynamic system whose input consists of the two defining
processes {α(t)} and {β(t)} along with the buffer size θ, its state is comprised of the buffer
content process, and its output includes the outflow and overflow processes. The state and
output processes are referred to as derived processes, since they are determined by the
defining processes. Since the input sample functions (realizations) of {α(t)} and {β(t)} are
piecewise constant and right-continuous, the state trajectory x(θ; t) is piecewise linear and
continuous in t, and the output function γ(θ; t) is piecewise constant. Moreover, the state
trajectory can be decomposed into two kinds of intervals: empty periods and busy periods.
Empty Periods (EP) are maximal intervals during which the buffer is empty, while Busy
Periods (BP) are supremal intervals during which the buffer is nonempty. Observe that
during an EP the system is not necessarily idle since the server may be active; see (B.7).
Note also that since x(θ; t) is continuous in t, EPs are always closed intervals, whereas BPs
are open intervals unless containing one of the end points 0 or T . The outflow process {δ(t)}
becomes important in modeling networks of SFMs and it will not concern us any further
here, since our interest in this paper lies in single-node systems.

Let L(θ) : Θ → R be a random function defined over the underlying probability space
(Ω,F , P). Strictly speaking, we write L(θ, ω) to indicate that this sample function depends
on the sample point ω ∈ Ω, but will suppress ω unless it is necessary to stress this fact.
In what follows, we will consider two performance metrics, the Loss Volume LT (θ) and the
Cumulative Workload (or just Work) QT (θ), both defined on the interval [0, T] via the
following equations:

LT (θ) =
∫ T

0
γ(θ; t)dt, (B.9)

QT (θ) =
∫ T

0
x(θ; t)dt, (B.10)

82

where, as already mentioned, we assume that x(θ; 0) = 0. Observe that 1
T E [LT (θ)] is the

Expected Loss Rate over the interval [0, T], a common performance metric of interest (from
which related metrics such as Loss Probability can also be derived). Similarly, 1

T E [QT (θ)]
is the Expected Buffer Content over [0, T]. We may then formulate optimization problems
such as the determination of θ∗ that minimizes a cost function of the form

J(θ) =
1
T

E [QT (θ)] +
R

T
E [LT (θ)] ≡ 1

T
JQ(θ) +

R

T
JL(θ),

where R represents a rejection cost due to overflow. In order to accomplish this task, we rely
on estimates of dJL(θ)/dθ and dJQ(θ)/dθ provided by the sample derivatives dLT (θ)/dθ and
dQT (θ)/dθ for use in stochastic gradient-based schemes. Accordingly, the objective of the
next section is the estimation of the derivatives of JL(θ) and JQ(θ), which we will pursue
through Infinitesimal Perturbation Analysis (IPA) techniques [41], [20]). Henceforth we
shall use the “prime” notation to denote derivatives with respect to θ, and will proceed
to estimate the derivatives J

′
L(θ) and J

′
Q(θ). The corresponding sample derivatives are

denoted by L
′
T (θ) and Q

′
T (θ), respectively.

B.4 Infinitesimal Perturbation Analysis (IPA) with respect
to Buffer Size or Threshold

As already mentioned, we will concentrate on the buffer size θ in the SFM described above
or, equivalently, a threshold parameter used for buffer control. We assume that the processes
{α(t)} and {β(t)} are independent of θ and of the buffer content. Thus, we consider network
settings operating with protocols such as ATM and UDP, but not TCP. Our objective is to
estimate the derivatives J

′
L(θ) and J

′
Q(θ) through the sample derivatives L

′
T (θ) and Q

′
T (θ)

which are commonly referred to as Infinitesimal Perturbation Analysis (IPA) estimators;
comprehensive discussions of IPA and its applications can be found in [41], [20]. The
IPA derivative-estimation technique computes L

′
T (θ) and Q

′
T (θ) along an observed sample

path ω. An IPA-based estimate L′(θ) of a performance metric derivative dE[L(θ)]/dθ is
unbiased if dE[L(θ)]/dθ = E[L′(θ)]. Unbiasedness is the principal condition for making
the application of IPA practical, since it enables the use of the sample (IPA) derivative in
control and optimization methods that employ stochastic gradient-based techniques.

We consider sample paths of the SFM over [0, T]. For a fixed θ ∈ Θ, the interval [0, T]
is divided into alternating EPs and BPs. Suppose there are K busy periods denoted by Bk,
k = 1, . . . ,K, in increasing order. Then, by (B.9)-(B.10), the sample performance functions
assume the following form:

LT (θ) =
K∑

k=1

∫

Bk

γ(θ; t)dt, (B.11)

QT (θ) =
K∑

k=1

∫

Bk

x(θ; t)dt. (B.12)

83

As mentioned earlier, the processes {α(t)} and {β(t)} are assumed piecewise constant. This
implies that, w.p.1, there exist a random integer N(T) > 0 and an increasing sequence of
time points 0 = t0 < t1 < . . . < tN(T) < tN(T)+1 = T , generally dependent upon the sample
path ω, such that ti is a jump (discontinuity) point of α(t) − β(t); clearly, α(t) − β(t) is
continuous at all points other than t0, . . . , tN(T). We will assume that N(T) has a finite
expectation, i.e., E[N(T)] < ∞.

Viewed as a discrete-event system, an event in a sample path of the SFM may be either
exogenous or endogenous. An exogenous event is a jump in either {α(t)} or {β(t)}. An
endogenous event is defined to occur when the buffer becomes full or empty. We note
that the times at which the buffer ceases to be full or empty are locally independent of θ,
because they correspond to a change of sign in the difference function α(t) − β(t) (by a
random function f(θ) being “locally independent” of θ we mean that for a given θ there
exists ∆θ > 0 such that for every θ̄ ∈ (θ −∆θ, θ + ∆θ), w.p.1 f(θ̄) = f(θ), where ∆θ may
depend on both θ and on the sample path). Thus, given a BP Bk, its starting point is one
where the buffer ceases to be empty and is therefore locally independent of θ, while its end
point generally depends on θ. Denoting these points by ξk and ηk(θ) we express Bk as

Bk = (ξk, ηk(θ)), k = 1, . . . , K

for some random integer K. The BPs can be classified according to whether some overflow
occurs during them or not. Thus, we define the random set

Φ(θ) := {k ∈ {1, . . . , K} : x(t) = θ,

α(t)− β(t) > 0 for some t ∈ (ξk, ηk(θ))}.

For every k ∈ Φ(θ), there is a (random) number Mk ≥ 1 of overflow periods in Bk, i.e.,
intervals during which the buffer is full and α(t) − β(t) > 0. Let us denote these over-
flow periods by Fk,m, m = 1, . . . , Mk, in increasing order and express them as Fk,m =
[uk,m(θ), vk,m], k = 1, . . . , K. Observe that the starting time uk,m(θ) generally depends
on θ, whereas the ending time vk,m is locally independent of θ, since it corresponds to a
change of sign in the difference function α(t)− β(t), which has been assumed independent
of θ. Finally let

B(θ) = |Φ(θ)| (B.13)

where |·| denotes the cardinality of a set, i.e., B(θ) is the number of BPs in [0, T] during
which some overflow is observed. To summarize:

• There are K busy periods in [0, T], with Bk = (ξk, ηk(θ)), k = 1, . . . ,K.

• k ∈ Φ(θ) iff some overflow occurs during Bk; we set B(θ) = |Φ(θ)|.
• For each k ∈ Φ(θ), there are Mk overflow periods in Bk, i.e., Fk,m = [uk,m(θ), vk,m],

m = 1, . . . ,Mk.

A typical sample path is shown in Fig. B.4, where K = 3, Φ = {1, 3}, M1 = 2, M2 = 0,
M3 = 1.

84

 x(t)

θ

ξ1
η1 u1,1 v1,1 u1,2 v1,2

B1

F1,1 F1,2

B2 B3

t

Figure B.4: A typical sample path of a SFM

As mentioned in the Introduction, we present two ways of deriving IPA estimators: (i)
by evaluating the finite differences ∆LT (θ) and ∆QT (θ) as functions of ∆θ, obtaining left
and/or right sample derivatives (depending on whether ∆θ < 0 or ∆θ > 0), taking limits
as ∆θ → 0, and finally exploring if they yield unbiased estimates of J

′
L(θ) and J

′
Q(θ); or

(ii) by explicitly evaluating L
′
T (θ) and Q

′
T (θ), which requires some additional technical

assumptions. We will first proceed with the former approach and consider only the loss
volume metric LT (θ); the analysis for QT (θ) is similar, though a bit more involved (see
also [15]). In pursuing this approach, we will also derive some results that will be used to
establish the unbiasedness of the estimators L

′
T (θ) and Q

′
T (θ) obtained through the latter

approach.

B.4.1 IPA Using Finite Difference Analysis

The stochastic component of the SFM manifests itself in the duration of the intervals defined
by exogenous event occurrences corresponding to jumps in either α(t) or β(t). Let {Ai},
i = 1, 2, . . ., be the point process defined by these exogenous event times. For convenience,
let αi and βi denote the (constant) inflow rate and service rate, respectively, over the
interval [Ai, Ai+1). Note that we do not impose any restrictions on the probability law of
the intervals defined by these events.

The main result of this section is to show that the sample derivative L
′
T (θ), i.e., the

sensitivity of the loss volume with respect to θ, is given by −B(θ), and that this is an
unbiased estimator of J

′
L(θ). Recall that B(θ) is simply the count of busy periods in which

at least one overflow period is observed. Moreover, this remarkably simple estimator is
independent of any assumptions on the traffic process or service process, as well as of the
rates involved and even θ, i.e., it is nonparametric.

The starting point in IPA is to consider a nominal sample path under some buffer size
(equivalently, admission threshold) θ and a perturbed sample path resulting from perturbing
θ by ∆θ, while keeping the realizations of the processeses {α(t)} and {β(t)} unchanged,
hence leaving {Ai}, i = 1, 2, . . ., unchanged. For simplicity, we limit ourselves to the case
where ∆θ > 0, leading to an estimate of the right sample derivative of LT (θ); the case
where ∆θ < 0 is similar, leading to an estimate of the left sample derivative of LT (θ). We

85

then define
∆xi(θ, ∆θ) = xi(θ + ∆θ)− xi(θ),

where xi(θ) denotes the nominal sample buffer content at time Ai and xi(θ + ∆θ) denotes
the perturbed sample buffer content at the same time. Similarly, we define perturbations
for some additional sample path quantities as follows. First, setting A0 = 0, let

Li(θ) =
∫ Ai

Ai−1

γ(θ; t)dt, i = 1, 2, . . . (B.14)

be the total loss volume observed over an interevent interval [Ai−1, Ai), and define

∆Li(θ, ∆θ) = Li(θ + ∆θ)− Li(θ) (B.15)

In addition, let
yi+1(θ) = xi(θ) + (αi − βi)[Ai+1 −Ai] (B.16)

and note that (αi − βi)[Ai+1 − Ai] is simply the amount of change in the buffer content
from time Ai to time Ai+1. Therefore, yi+1(θ) is the queue content obtained at time Ai+1

if the queue were allowed to become negative or to exceed θ. We may then define

∆yi(θ, ∆θ) = yi(θ + ∆θ)− yi(θ)

Finally, we define a perturbation in the ending time of a BP as

∆ηk(θ, ∆θ) = ηk(θ + ∆θ)− ηk(θ), k = 1, 2, . . .

For notational simplicity, we shall henceforth suppress the arguments of all quantities ∆xi,
∆yi, ∆Li, ∆ηk.

Consider a typical BP, Bk, and all possible events that can take place in it, so as to
determine how associated perturbations are either generated (due to ∆θ) or propagated
from the previous event. The kth busy period is initiated by an exogenous event at time
ξk = Ai, for some i, such that αi − βi > 0, and let us assume that ∆xi = 0. Regarding the
next exogenous event at time Ai+1 there are two possible cases to consider:

Case I: yi+1(θ) ≤ θ. In this case, yi+1(θ) is given by (B.16) and we have (see also
Fig. B.5(a)):

xi+1(θ) = yi+1(θ)
Li(θ) = 0

Clearly, ∆xi+1 = ∆yi+1 = ∆Li+1 = 0.

Case II: yi+1(θ) > θ. In this case, the queue content in the perturbed path can increase
beyond θ up to the perturbed value θ + ∆θ. Then, as also seen in Fig. B.5(b),

∆xi+1 = ∆θ (B.17)
∆Li+1 = −∆θ (B.18)

86

(a) (b)

θ
θ + ∆θ

xi

xi+1

Ai Ai+1

θ

θ + ∆θ

yi+1

Fi

xi+1 + ∆xi+1

xi+1

Ai Ai+1

Figure B.5: (a) Case I: No perturbation generation (yi+1(θ) ≤ θ). (b) Case II: Perturbation
generation for 0 < ∆θ ≤ yi+1(θ)− θ

provided that ∆θ is such that 0 < ∆θ ≤ yi+1(θ) − θ. To consider the case where ∆θ >
yi+1(θ)− θ, let the length of the overflow period in the nominal path be Fi and note that

Fi =
yi+1 − θ

αi − βi

.

Thus, if ∆θ > yi+1(θ)− θ = (αi − βi)Fi, then it is easy to see that the shaded area in Fig.
B.5(b) reduces to a triangle with area 1

2(αi − βi)F 2
i . We then get

∆xi+1 = (αi − βi)Fi (B.19)
∆Li+1 = −(αi − βi)Fi (B.20)

Using the standard notation [x]+ = max(x, 0), we can combine (B.17)-(B.18) with (B.19)-
(B.20) to write

∆xi+1 = ∆θ − [∆θ − (αi − βi)Fi]
+ (B.21)

∆Li+1 = −∆θ + [∆θ − (αi − βi)Fi]
+ (B.22)

Equations (B.21)-(B.22) capture the perturbation generation process due to ∆θ. The next
step is to study how perturbations can be propagated, assuming the general situation ∆xi ≥
0. Doing so leads to the following result, which describes the complete queue content
perturbation dynamics and establishes bounds for ∆xi.

Lemma 4 For all i = 1, 2, . . .,
0 ≤ ∆xi ≤ ∆θ (B.23)

and

∆xi+1 =
{

[∆xi − (βi − αi)Ii]
+ if αi − βi < 0

∆θ − [∆θ −∆xi − (αi − βi)Fi]
+ if αi − βi ≥ 0

(B.24)

where Ii is the length of an EP ending at Ai+1 with Ii = 0 if no such period exists, and Fi

is the length of an overflow period ending at Ai+1 with Fi = 0 if no such period exists.

Proof. See Appendix.

87

An immediate consequence of Lemma 4 is that a queue content perturbation may prop-
agate across busy periods depending on the length of the EP separating these busy periods.
This is because ∆xi+1 = [∆xi − (βi − αi)Ii]

+ ≥ 0 when an event occurs at time Ai+1 that
ends an EP of length Ii. Moreover, recalling that the endpoints of busy periods are denoted
by ηk(θ), k = 1, 2, . . ., the perturbation in ηk(θ) can be easily obtained by noticing in Fig.
B.8(a) (Case 1.2 in the proof of Lemma 4) that

∆ηk(θ) =
∆θ

βi − αi
, (B.25)

provided that ∆θ ≤ (βi − αi)Ii, where αi and βi are the inflow rate and service rate at
the time the BP ends. To account for the fact that the kth BP may contain an overflow
interval of length Fi with ∆θ > (αi − βi)Fi + ∆xi, ∆θ in (B.25) can be replaced by ∆θ −
[∆θ −∆xi − (αi − βi)Fi]

+ ≤ ∆θ in view of (B.24). If, on the other hand, ∆θ > (βi−αi)Ii,
then the kth and (k + 1)th busy periods are merged, which implies that ∆ηk(θ) includes
the entire length of the (k + 1)th busy period.

Next, we identify bounds for ∆Li (a generalization of the bounds for ∆xi and ∆Li can
also be found in [80]).

Lemma 5 For all i = 1, 2, . . .,
−∆θ ≤ ∆Li ≤ 0 (B.26)

Proof. See Appendix.

Recall that if at least one overflow period is observed in the kth BP, then k ∈ Φ(θ).
Making use of the standard indicator function 1[k ∈ Φ(θ)] = 1 if k ∈ Φ(θ) and zero
otherwise, we have the following result, which allows us to characterize the cumulative loss
perturbation at the end of a BP, which we will denote by Λk(∆θ), k = 1, . . . , K.

Lemma 6 Consider a BP Bk = (ξk, ηk(θ)) with ξk = Aj, ∆xj = 0, and Am < ηk(θ) ≤
Am+1. Assuming ∆θ − ∆xi − (αi − βi)Fi ≤ 0 for all i = j, . . . , m, the cumulative loss
perturbation at the end of this busy period is

Λk(∆θ) = −∆θ1[k ∈ Φ(θ)], k = 1, . . . , K (B.27)

Proof. See Appendix.

In simple terms, the loss perturbation depends only on the presence of an overflow within
the observed busy period and not their number. It is noteworthy that this perturbation
does not explicitly depend on any values that α(t) or β(t) may take or the nature of the
stochastic processes involved. Considering Lemma 6, note that it allows us to analyze all
busy periods separately and accumulate loss perturbations at the end of the sample path
over all busy periods observed; this, however, is contingent on the fact that ∆xi = 0 when
a BP starts with an exogenous event at Ai. On the other hand, we saw that a consequence
of Lemma 4 is ∆xi+1 = [∆xi − (βi − αi)Ii]

+ following an EP of length Ii, i.e., the buffer
content perturbation may not be zero when a BP starts, depending on the length of the EP
separating it from the preceding BP.

88

We can now derive an unbiased derivative estimate for our performance metric by es-
tablishing the following result.

Theorem 7 The (right) derivative of the Expected Loss, E[LT (u)], is given by

dE[LT (θ)]
dθ

= −E

[
K∑

k=1

1[k ∈ Φ(θ)]

]
= −E [B(θ)] (B.28)

where K is the (random) number of busy periods contained in [0, T], including a possibly
incomplete last busy period.

Proof. We have

dE[LT (θ)]
dθ

= lim
∆θ→0

1
∆θ

E [∆LT (θ)]

= lim
∆θ→0

1
∆θ

E

[
K∑

k=1

Λk(∆θ)

]

where Λk(∆θ) = −∆θ1[k ∈ Φ(θ)] from Lemma 6, provided ∆θ −∆xi − (αi − βi)Fi ≤ 0 for
all Ai ∈ [0, T]. It follows that

dE[LT (θ)]
dθ

= −E

[
K∑

k=1

1[k ∈ Φ(θ)]

]
= −E [B(θ)]

where we have used the definition in (B.13).

If ∆θ−∆xi− (αi−βi)Fi > 0 for some Ai ∈ [0, T], then the only additional effect comes
from ∆Li+1 = −(αi − βi)Fi < 0 in (B.53). Then, consider

E[−(αi − βi)Fi | ∆θ −∆xi > (αi − βi)Fi]

=
∫ ∆θ−∆xi

0
−xf(x)dx

where f(·) is the conditional pdf of (αi − βi)Fi given ∆θ − ∆xi > (αi − βi)Fi, and let
f(·) ≤ c < ∞. Recalling that 0 ≤ ∆xi ≤ ∆θ from Lemma 4, we get

∫ ∆θ−∆xi

0
−xf(x)dx ≥

∫ ∆θ

0
−xf(x)dx

≥
∫ ∆θ

0
−∆θf(x)dx

≥ ∆θ

∫ ∆θ

0
−cdx = −c (∆θ)2

and it follows that
E [−(αi − βi)Fi] ≥ −c (∆θ)2 (B.29)

89

The cumulative loss perturbation due to events such that ∆Li+1 = −(αi−βi)Fi is bounded
from below by

N(T)∑

i=1

−(αi − βi)Fi,

where Fi is the length of an overflow interval after the ith exogenous event, with Fi = 0 if
no such overflow interval is present, and N(T) is the total number of exogenous events in
[0, T]. This cumulative loss perturbation is also bounded from above by 0, since ∆Li ≤ 0
from Lemma 5. Using (B.29), we get, given some N(T),

lim
∆θ→0

1
∆θ

E

N(T)∑

i=1

−(αi − βi)Fi

≥ lim

∆θ→0

1
∆θ

N(T)∑

i=1

−c (∆θ)2

= lim
∆θ→0

[−c∆θN(T)]

and
lim

∆θ→0
[−c∆θ] E [N(T)] = 0

where, by assumption, E[N(T)] < ∞. This completes the proof.

An immediate implication of this theorem is that −B(θ) is an unbiased estimator of
dE[LT (θ)]/dθ: [

dE[LT (θ)]
dθ

]

est

= −B(θ) (B.30)

This estimator is extremely simple to implement: (B.30) is merely a counter of all busy
periods observed in [0, T] in which at least one overflow takes place. Again, no knowledge
of the traffic or processing rates is required, nor does (B.30) depend on the nature of the
random processes involved.

Using the finite difference approach above, it is also possible to derive an unbiased
estimator for dE[QT (θ)]/dθ (see [15]), but it is considerably more tedious; we will see how
to derive the same estimator in the next section by simpler means. Finally, note that (B.28)
was derived using ∆θ > 0; thus, the analysis has to be repeated for ∆θ < 0 in order to
evaluate the left sample derivative, and, although this does not present any conceptual
difficulties, it adds to the tediousness of the finite difference analysis we have pursued thus
far.

B.4.2 IPA Using Sample Derivatives

In this subsection, we derive explicitly the sample derivatives L
′
T (θ) and Q

′
T (θ) of the loss

volume and work, defined in (B.11) and (B.12), respectively. We then show that they
provide unbiased estimators of the expected loss volume sensitivity dE[LT (θ)]/dθ and the
expected work sensitivity dE[QT (θ)]/dθ.

90

Since we are concerned with the sample derivatives L
′
T (θ) and Q

′
T (θ), we have to identify

conditions under which they exist. Observe that any endogenous event time (a time point
when the buffer becomes full or empty) is generally a function of θ; see also (B.6). Denoting
this point by t(θ), the derivative t′(θ) exists as long as t(θ) is not a jump point of the
difference process {α(t)− β(t)}. Recall that the times at which the buffer ceases to be full
or empty are locally independent of θ, because they correspond to a change-of-sign of the
difference sample function α(t)−β(t), which does not depend on θ. Excluding the possibility
of the simultaneous occurrence of two events, the only situation preventing the existence
of the sample derivatives L

′
T (θ) and Q

′
T (θ) involves an interval during which x(t) = θ and

α(t)− β(t) = 0, as seen in (B.8)); in this case, the one-sided derivatives of LT (θ)and QT (θ)
exist and can be obtained with the approach of the previous section. In order to keep the
analysis simple, we focus only on the differentiable case. Therefore, the analysis that follows
rests on the following technical conditions:

Assumption 1.
a. W.p.1, α(t)− β(t) 6= 0.
b. For every θ ∈ Θ, w.p.1, no two events may occur at the same time.

Remark. We stress the fact that the above conditions for ensuring the existence of the
sample derivatives L

′
T (θ) and Q

′
T (θ) are very mild. Part b above is satisfied whenever the

cdf’s (or conditional cdf’s) characterizing the intervals between exogenous event occurrences
are continuous. For example, in the simple case where β(t) = β and α(t) can only take two
values, 0 and α > β, suppose that the inflow process switches from α to 0 after θ/(α − β)
time units w.p. 1. The buffer then becomes full exactly when an exogenous event occurs,
and the loss volume sample function experiences a discontinuity w.p. 1. Such situations
can only arise for a small finite subset of Θ (for which one can still calculate either the left
or right derivatives) and they are of limited practical consequence.

We next derive the IPA derivatives of LT (θ)and QT (θ). Recall that B(θ) = |Φ(θ)|, i.e.,
the number of BPs containing at least one overflow period.

Theorem 8 For every θ ∈ Θ,
L
′
T (θ) = −B(θ). (B.31)

Proof. Recalling that Bk = (ξk, ηk(θ)), we have, from (B.11),

LT (θ) =
∑

k∈Φ(θ)

∫ ηk(θ)

ξk

γ(θ; t)dt, (B.32)

which after differentiation yields

L
′
T (θ) =

∑

k∈Φ(θ)

d

dθ

∫ ηk(θ)

ξk

γ(θ; t)dt. (B.33)

Note that the derivative in (B.33) is taken along a sample path. The set Φ(θ), though
depending on θ, can be viewed as a constant for the purpose of taking the derivative. The
reason is that, by virtue of Assumption 1b, it is locally independent of θ, similarly to

91

the endogenous event times discussed in the first part of Section 4 (i.e., for every fixed θ,
w.p.1 there exists ∆θ > 0, such that, for every θ̄ ∈ [θ−∆θ, θ + ∆θ], Φ(θ̄) = Φ(θ); although
this ∆θ generally depends on the given sample path, our derivative is taken along a specific
sample path, hence (B.33) is justified).

Next, we focus on a particular Bk with k ∈ Φ(θ) and we shall suppress the index k to
simplify the notation. Accordingly, the BP in question is denoted by B = (ξ, η(θ)), and
there are M ≥ 1 overflow periods in B, denoted by Fm = [um(θ), vm], m = 1, . . . ,M . A
typical scenario is depicted in Fig. B.4, where in the first BP we have M = 2. The loss
volume over B is given by the function

λ(θ) =
∫ η(θ)

ξ
γ(θ; t)dt. (B.34)

We next prove that
λ
′
(θ) = −1, (B.35)

from which Eq. (B.31) immediately follows in view of (B.32)-(B.34). From the definition
of γ(θ; t) in (B.8), we can rewrite (B.34) as

λ(θ) =
M∑

m=1

∫ vm

um(θ)
[α(t)− β(t)]dt. (B.36)

Since the points um(θ), m = 1, . . . , M , and the jump points of α(t)−β(t) constitute events,
and since w.p. 1 no two events can occur at the same time by Assumption 1b, the function
α(t) − β(t) must be continuous w.p. 1 at the points um(θ), m = 1, . . . , M . Consequently,
by taking derivatives with respect to θ in (B.36) we obtain,

λ
′
(θ) = −

M∑

m=1

[α(um(θ))− β(um(θ))]u
′
m(θ). (B.37)

Next, consider the individual terms in the above sum (see also Fig. B.4 for an illustration).

1. If m = 1, then the buffer is neither full nor empty in the interval (ξ, u1(θ)). Since the
buffer content evolves from x(ξ) = 0 to x(u1(θ)) = θ, (B.6) implies

∫ u1(θ)

ξ
[α(t)− β(t)]dt = θ,

and, upon taking derivatives with respect to θ,

[α(u1(θ))− β(u1(θ))]u
′
1(θ) = 1. (B.38)

2. If m > 1, then the buffer is neither full nor empty in the interval (vm−1, um(θ)). Since
x(vm−1) = x(um(θ)) = θ we obtain, by (B.6),

∫ um(θ)

vm−1

[α(t)− β(t)]dt = 0,

92

and upon differentiating with respect to θ,

[α(um(θ))− β(um(θ))]u
′
m(θ) = 0 (B.39)

Finally, Eqs. (B.37), (B.38) and (B.39) imply (B.35), which immediately implies (B.31)
and the proof is complete.

Note that Theorem 8 is consistent with Theorem 7. However, Theorem 7 includes a
direct proof of the unbiasedness of the estimator −B(θ), whereas the present approach
requires a separate proof that the sample derivative L

′
T (θ) = −B(θ) is in fact unbiased.

The unbiasedness of this IPA derivative will be proven later, after we establish the IPA
derivative of the work QT (θ) defined in (B.12).

Theorem 9 For every θ ∈ Θ,

Q
′
T (θ) =

∑

k∈Φ(θ)

[ηk(θ)− uk,1(θ)]. (B.40)

Proof. We focus on a particular BP Bk with k ∈ Φ(θ), and again suppress the notational
dependency on k for the sake of simplicity. Accordingly, consider a BP Bk = (ξ, η(θ)), and
denote its overflow periods by Fm = [um(θ), vm], m = 1, . . . , M , for some M ≥ 1 (e.g.,
M = 2 in the first BP of Fig. B.4). Define the function

q(θ) =
∫ η(θ)

ξ
x(θ; t)dt. (B.41)

It suffices to prove that
q′(θ) = η(θ)− u1(θ) (B.42)

since this would immediately imply (B.40). Since x(θ; t) is continuous in t, taking the
derivative with respect to θ in (B.41) and letting x′(θ; t) denote the partial derivative with
respect to θ yields

q′(θ) =
∫ η(θ)

ξ
x′(θ; t)dt + x(θ; η(θ))η′(θ) =

∫ η(θ)

ξ
x′(θ; t)dt, (B.43)

since the BP ends at η(θ), hence x(θ; η(θ)) = 0. To evaluate this partial derivative (which
exists at all t except t = um and t = vm) we consider all possible cases regarding the location
of t in the BP Bk = (ξ, η(θ)) (see Fig. B.4):

1. t ∈ (ξ, u1(θ)). In this case, the buffer is neither empty nor full in this interval. It
follows, using (B.6), that

x(θ; t) =
∫ t

ξ
[α(τ)− β(τ)]dτ .

Since the right-hand side above is independent of θ, we have x′(θ; t) = 0.

93

2. t ∈ (um(θ), vm), m = 1 . . . ,M . Since (um(θ), vm) is an overflow period, x(θ, t) = θ in
these intervals, hence x′(θ; t) = 1.

3. t ∈ (vm, um+1(θ)), m = 1, . . . , M − 1. Here, the buffer is neither empty nor full in the
interval (vm, t), while x(θ; vm) = θ. It follows, using (B.6), that

x(θ; t) = θ +
∫ t

vm

[α(τ)− β(τ)]dτ,

and upon differentiating with respect to θ, we obtain x′(θ; t) = 1.

4. t ∈ (vM , η(θ)). This case is identical to the previous one, yielding x′(θ; t) = 1.

In summary, x′(θ; t) = 0 for all t ∈ (ξ, u1(θ)) (Case 1), and x′(θ; t) = 1 for all t ∈
(u1(θ), η(θ)) (Cases 2-4). Therefore, it follows from (B.43) that (B.42) holds, implying
(B.40) and completing the proof.

In simple terms, the contribution of a BP, Bk, to the sample derivative Q
′
T (θ) in (B.40)

is the length of the interval defined by the first point at which the buffer becomes full
and the end of the BP. Once again, as in (B.31), observe that the IPA derivative Q

′
T (θ) is

nonparametric, since it requires only the recording of times at which the buffer becomes full
(i.e., uk,1(θ)) and empty (i.e., ηk(θ)) for any Bk with k ∈ Φ(θ). We also remark that the
same IPA derivative can be obtained through the finite difference analysis of the previous
section (see [15]), but with considerably more effort.

IPA Unbiasedness

We next prove the unbiasedness of the IPA derivatives L
′
T (θ) and Q

′
T (θ) obtained above. Al-

though we have already shown in (B.28) that−B(θ) is an unbiased estimate of dE[LT (θ)]/dθ,
we supply an alternative and greatly simplified proof based on the direct derivation of the
IPA estimator in this section and on some of the results of the finite-difference analysis in
Section 4.1. By a similar technique, we also supply a proof of the unbiasedness of the IPA
estimator Q

′
T (θ) in (B.40). These proofs, jointly with the sample-derivative technique for

obtaining the estimators, suggest the possibility of extensive generalizations to the func-
tional forms of α(t) and β(t) (beyond piecewise constant), to be explored in a forthcoming
paper (also, see [78], [79]).

In general, the unbiasedness of an IPA derivative L′(θ) has been shown to be ensured
by the following two conditions (see [71], Lemma A2, p.70):

Condition 1. For every θ ∈ Θ, the sample derivative L′(θ) exists w.p.1.

Condition 2. W.p.1, the random function L(θ) is Lipschitz continuous throughout Θ,
and the (generally random) Lipschitz constant has a finite first moment.

Consequently, establishing the unbiasedness of L
′
T (θ) and Q

′
T (θ) as estimators of dE[LT (θ)]/dθ

and dE[QT (θ)]/dθ, respectively, reduces to verifying the Lipschitz continuity of LT (θ) and
QT (θ) with appropriate Lipschitz constants. Recall that N(T) is the random number of all
exogenous events in [0, T] and that we have assumed E[N(T)] < ∞.

94

Theorem 10 Under Assumption 1,

1. If E[N(T)] < ∞, then the IPA derivative L
′
T (θ) is an unbiased estimator of dE[LT (θ)]/dθ.

2. The IPA derivative Q
′
T (θ) is an unbiased estimator of dE[QT (θ)]/dθ.

Proof. Under Assumption 1, Condition 1 holds for LT (θ) and QT (θ). Therefore, it
only remains to establish Condition 2.

First, consider LT (θ). Recalling (B.14) and (B.15), we can write

∆LT (θ) =
N(T)∑

i=1

∆Li(θ)

by partitioning [0, T] into intervals [Ai−1, Ai) defined by successive exogenous events. Then,
by Lemma 5, −∆θ ≤ ∆Li ≤ 0, so that

|∆LT (θ)| ≤ N(T) |∆θ| ,

i.e., LT (θ) is Lipschitz continuous with constant N(T). Since E[N(T)] < ∞, this establishes
unbiasedness.

Consider next the sample function QT (θ), defined by (B.12) and fix θ and ∆θ > 0. By
Lemma 4, 0 ≤ ∆xi ≤ ∆θ, hence the difference ∆x(θ, ∆θ; t) := x(θ +∆θ; t)−x(θ; t) satisfies
the inequalities

0 ≤ ∆x(θ,∆θ; t) ≤ ∆θ.

Consequently, in view of (B.12),

|∆QT (θ)| =
∣∣∣∣
∫ T

0
∆x(θ, ∆θ; t)dt

∣∣∣∣ ≤ T |∆θ| ,

that is, QT (θ) is Lipschitz continuous with constant T . This completes the proof.

Remark. For the more commonly used performance metrics 1
T E [LT (θ)] (the Expected

Loss Rate over [0, T]) and 1
T E [QT (θ)] (the Expected Buffer Content over [0, T]), the Lips-

chitz constants in Theorem 10 become N(T)/T and 1, respectively. As T →∞, the former
quantity typically converges to the exogenous event rate.

B.5 Optimal Buffer Control Using SFM-Based IPA Estima-
tors

As suggested in Section 2 and illustrated in Fig. B.2, the solution to an optimization problem
defined for an actual network node (i.e., a node that operates as a queueing system) may be
accurately approximated by the solution to the same problem based on a SFM of the node.
However, this may not be always the case. On the other hand, the simple form of the IPA
estimators of the Expected Loss Rate and Expected Buffer Content obtained through (B.31)

95

and (B.40) allows us to use data from the actual (real-world) system in order to estimate
sensitivities that, in turn, may be used to solve an optimization problem of interest. In other
words, the form of the IPA estimators is obtained by analyzing the system as a SFM, but
the associated values are based on real data. In particular, an algorithm for implementing
the estimators (B.31) and (B.40) is given below:

IPA Estimation Algorithm

• Initialize a counter C := 0 and a cumulative timer T := 0.

• Initialize τ := 0.

• If an overflow event is observed at time t and τ = 0:

– Set τ := t

• If a busy period ends at time t and τ > 0:

– Set C := C − 1 and T := T + (t− τ)

– Reset τ := 0.

• If t = T , and τ > 0:

– Set C := C − 1 and T := T + (t− τ).

The final values of C and T provide the IPA derivatives L
′
T (θ) and Q

′
T (θ) respectively.

We remark that the “overflow” and “end of BP” events are readily observable during actual
network operation. In addition, we point out once again that these estimates are indepen-
dent of all underlying stochastic features, including traffic and processing rates. Finally,
the algorithm is easily modified to apply to any interval [T1, T2].

Let us now return to the buffer control problem presented in Section 2, where the
objective was to determine a threshold C that minimizes a cost function of the form

JT (C) = Q̄T (C) + R · L̄T (C)

trading off the expected loss rate with a rejection penalty R for the expected queue length.
If a SFM is used instead, then the cost function of interest becomes

J(θ) =
1
T

E[QT (θ)] +
R

T
E[LT (θ)]

and the optimal threshold parameter, θ∗, may be determined through a standard stochastic
approximation algorithm based on (B.4). The gradient estimator Hn(θ, ωSFM

n) is the IPA
estimator of dJ/dθ based on (B.31) and (B.40):

Hn(θ, ωSFM
n) =

1
T

∑

k∈Φ(θ)

[ηk(θ)− uk,1(θ)]− R

T
B(θ) (B.44)

96

evaluated over a simulated sample path ωSFM
n of length T , following which a control update

is performed through (B.4) based on the value of Hn(θ, ωSFM
n).

The interesting observation here is that the same estimator may be used in (B.5) as
follows: If a packet arrives and is rejected, the time this occurs is recorded as τ in the
algorithm above. At the end of the current busy period, the counter C and timer T are
updated. Thus, the exact same expression as in the right-hand side of (B.44) can be used
to update the threshold:

Cn+1 = Cn − νnHn(Cn, ωDES
n), n = 0, 1, . . . (B.45)

Note that, after a control update, the state must be reset to 0, in accordance with our
convention that all performance metrics are defined over an interval [0, T] with an initially
empty buffer. In the case of off-line control, this simply amounts to simulating the system
after resetting its state to 0. In the more interesting case of on-line control, we proceed
as follows. Suppose that the nth iteration ends at time τn and the state is x(Cn; τn) (in
general, x(Cn; τn) > 0). At this point, the threshold is updated and its new value is Cn+1.
Let τ0

n > τn be the next time that the buffer is empty, i.e., x(Cn+1; τ0
n) = 0. At this point,

the (n + 1)th iteration starts and the next gradient estimate is obtained over the interval
[τ0

n, τ0
n + T], so that τn+1 = τ0

n + T and the process repeats. The implication is that over
the interval [τn, τ0

n] no estimation is carried out while the controller waits for the system to
be reset to its proper initial state; therefore, sample path information available over [τn, τ0

n]
is effectively wasted as far as gradient estimation is concerned.

Figure B.6 depicts examples of the application of this scheme to a single-node SFM under
six different parameter settings (scenarios), summarized in Table 1. As in Fig. B.2, ‘DES’
denotes curves obtained by estimating JT (C) over different (discrete) values of C, ‘SFM’
denotes curves obtained by estimating J(θ) over different values of θ, and ‘Opt.Algo.’ repre-
sents the optimization process (B.45), where we maintain real-valued thresholds throughout.
The first three scenarios correspond to a high traffic intensity ρ compared to the remaining
three. For each example, C∗ is the optimal threshold obtained through exhaustive simula-
tion. In all simulations, an ON-OFF traffic source is used with the number of arrivals in
each ON period geometrically distributed with parameter p and arrival rate α; the OFF
period is exponentially distributed with parameter µ; and the service rate is fixed at β.
Thus, the traffic intensity of the system ρ is α(1

αp)/β(1
αp + 1

µ), where 1
αp is the average

length of an ON period and 1
µ is the average length of an OFF period. The rejection cost is

R = 50. For simplicity, νn in (B.45) is taken to be a constant νn = 5. Finally, in all cases
T = 100, 000. As seen in Fig. B.6, the threshold value obtained through (B.45) using the
SFM-based gradient estimator in (B.44) either recovers C∗ or is close to it with a cost value
extremely close to JT (C∗); since in some cases the cost function is nearly constant in the
neighborhood of the optimum, it is difficult to determine the actual optimal threshold, but
it is also practically unimportant since the cost is essentially the same. We have also imple-
mented (B.45) with Hn(Cn, ωDES

n) estimated over shorter interval lengths T = 10, 000 and
T = 5, 000, with virtually identical results. Looking at Fig. B.6, it is worth observing that
determining θ∗ as an approximation to C∗ through off-line analysis of the SFM would also
yield good approximations, further supporting the premise of this paper that SFMs pro-

97

Scenario ρ α p µ β C∗

1 0.99 1 0.1 0.1 0.505 7
2 0.99 1 0.05 0.05 0.505 7
3 0.99 2 0.05 0.1 1.01 15
4 0.71 1 0.1 0.1 0.7 13
5 0.71 1 0.05 0.05 0.7 11
6 0.71 2 0.05 0.1 1.4 22

Table B.1: Parameter settings for six examples

vide an attractive modeling framework for control and optimization (not just performance
analysis) of complex networks.

B.6 Conclusions and Future Work

Stochastic Fluid Models (SFM) can adequately describe the dynamics of high-speed com-
munication networks, where they may be used to approximate discrete event models or
constitute primary models in their own right. When control and optimization are of pri-
mary importance (rather than performance analysis), a SFM may be used as a means for
accurately determining an optimal parameter setting, even though the corresponding per-
formance evaluated through the SFM may not be particularly accurate. With this premise
in mind, we have considered single-node SFMs from the standpoint of IPA derivative es-
timation. In particular, we have developed IPA estimators for the loss volume and work
as functions of the buffer size, and shown them to be unbiased and nonparametric. The
simplicity of the estimators and their nonparametric property suggest their application to
on-line network management. Indeed, for a class of buffer control problems, we have shown
how to use an optimization scheme (and illustrated it through numerical examples) for a
discrete event model (viewed as a real, queueing-based single-node system) using the IPA
gradient obtained from its SFM counterpart. Interestingly, there is no IPA derivative for
the discrete event model, since its associated control parameter is discrete.

For the loss volume performance function, the IPA derivative has been developed by two
separate techniques: finite difference analysis, and a sample derivative analysis. The former
method is more elaborate, but sheds light on the structure of the derivative estimator. The
second method is more direct and elegant, but its unbiasedness proof requires some results
obtained by the analysis of the former method. The sample-derivative method was also
applied to the IPA estimator of the buffer workload performance function.

The sample derivative analysis holds the promise of considerable extensions to multi-
ple SFMs as models of actual networks and to multiple flow classes that can be used for
differentiating traffic classes with different Quality-of-Service (QoS) requirements. Ongoing
research has already led to very encouraging results, reported in [15], involving IPA estima-
tors and associated optimization for flow control purposes in multi-node models. Finally,
for the purpose of session-by-session admission control, preliminary work suggests that one

98

Scenario 2

10

12

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 1

5

7

9

11

13

15

17

19

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 3

15

17

19

21

23

25

27

29

31

33

35

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 4

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

T hr eshol d

DES

SFM

Opt. Algo

Scenario 5

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Scenario 6

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Threshold

C
o

st

DES

SFM

Opt. Algo

Figure B.6: Optimal threshold determination in an actual system using SFM-based gradient
estimators - Scenarios 1-6

can use sensitivity information with respect to inflow rates (which can be obtained through
an approach similar to the one presented in this paper) and contribute to the development
of effective algorithms, yet to be explored.

Appendix

Proof of Lemma 4: Looking at any segment of the sample path over an interval
[Ai, Ai+1), there are two possibilities: either αi− βi < 0 or αi− βi ≥ 0. First, suppose that
αi − βi < 0 and consider the event which occurs at time Ai+1. There are three cases to
analyze:

Case 1.1: yi+1(θ) ≥ 0. In this case, as seen in Fig. B.7, we have:

∆yi+1 = ∆xi+1 = ∆xi (B.46)

Case 1.2: yi+1(θ) < 0 and yi+1(θ) + ∆yi+1 ≤ 0. In this case, as seen in Fig. B.8(a), the
kth BP ends and it is followed by an EP of length Ii, which in turn ends at time Ai+1.
Clearly,

∆xi+1 = 0 (B.47)

Case 1.3: yi+1(θ) < 0 and yi+1(θ) + ∆yi+1 > 0. This represents a situation where an EP
of length Ii is eliminated in the perturbed path, i.e., Ii < ∆xi/(βi − αi). As seen in Fig.

99

Ai Ai+1

xi + ∆xi

xi+1 + ∆xi+1

xi

xi+1

Figure B.7: Case 1.1: yi+1(θ) ≥ 0

(a)

xi + ∆xi

xi
Ii

xi+1= 0

yi+1 + ∆yi+1
Ai

yi+1
(b)

xi + ∆xi

xi Ii

Ai
xi+1= 0

yi+1

xi+1 + ∆xi+1

Ai+1 Ai+1

Figure B.8: (a) Case 1.2: yi+1(θ) < 0 and yi+1(θ) + ∆yi+1 ≤ 0. (b) Case 1.3: yi+1(θ) < 0
and yi+1(θ) + ∆yi+1 > 0

B.8(b), the buffer content perturbation becomes

∆xi+1 = ∆xi − (βi − αi)Ii, (B.48)

Next, let us assume that αi − βi ≥ 0. We then have three cases as follows:

Case 2.1: yi+1(θ) ≤ θ and yi+1(θ)+∆yi+1 ≤ θ. It is easy to see (Fig. B.9(a)) that this
is identical to Case 1.1 yielding (B.46).

Case 2.2: yi+1(θ) ≤ θ and yi+1(θ) + ∆yi+1 > θ. The perturbed buffer content cannot
exceed θ+∆θ, since ∆yi+1 = ∆xi ≤ ∆θ from (B.21); therefore, yi+1+∆yi ≤ θ+∆θ and the
situation is identical to that of Fig. B.9(a), again yielding (B.46). Case 2.3: yi+1(θ) > θ.
As seen in Fig. B.9(b),

∆xi+1 = ∆θ

as in Case II where perturbation generation was considered. Once again, however, it is
possible that ∆θ > (αi − βi)Fi + ∆xi, so that we write, similarly to Case II,

∆xi+1 = ∆θ − [∆θ −∆xi − (αi − βi)Fi]
+ . (B.49)

We may now establish (B.23) by combining (B.46), (B.47), (B.48), and (B.49) and by
observing that (i) In (B.48), Ii < ∆xi/(βi−αi) with βi−αi > 0, therefore 0 < ∆xi+1 < ∆xi,
and (ii) In (B.49), 0 ≤ ∆xi+1 ≤ ∆θ.

100

xi+1 + ∆xi+1

(a)

xi + ∆xi

xi

xi+1 + ∆xi+1

xi+1

Ai Ai+1

(b)

θ + ∆θ

θ

xi + ∆xi

xi

Ai Ai+1

Fi

xi+1

yi+1 + ∆yi+1

yi+1

Figure B.9: (a) Cases 2.1-2.2: yi+1(θ) ≤ θ. (b) Case 2.3: yi+1(θ) > θ

Next, by combining (B.46), (B.47), (B.48) we obtain the first part of (B.24), observing
that Ii = 0 in Case 1.1. To obtain the second part, we combine (B.46) and (B.49),
observing that when Fi = 0 in (B.49), we get ∆xi+1 = ∆xi, since ∆θ − ∆xi ≥ 0 from
(B.23), which reduces to (B.46) corresponding to Cases 2.1-2.2.

Proof of Lemma 5: Proceeding as in the proof of Lemma 4, we first consider the case
αi − βi < 0 and get:

Case 1.1: yi+1(θ) ≥ 0. In this case, as seen in Fig. B.7, we have:

∆Li+1 = 0 (B.50)

Case 1.2: yi+1(θ) < 0 and yi+1(θ) + ∆yi+1 ≤ 0. Clearly, as seen in Fig. B.8(a),

∆Li+1 = 0 (B.51)

Case 1.3: yi+1(θ) < 0 and yi+1(θ) + ∆yi+1 > 0. This represents a situation where an EP
of length Ii is eliminated in the perturbed path, i.e., Ii < ∆xi/(βi − αi). As seen in Fig.
B.8(b), no loss is involved in either path:

∆Li+1 = 0. (B.52)

Next, let us assume that αi − βi ≥ 0 and we have:

Case 2.1: yi+1(θ) ≤ θ and yi+1(θ)+∆yi+1 ≤ θ. It is easy to see (Fig. B.9(a)) that this
is identical to Case 1.1 yielding (B.50).

Case 2.2: yi+1(θ) ≤ θ and yi+1(θ) + ∆yi+1 > θ. As argued in the proof of Lemma 4,
the situation is identical to that of Fig. B.9(a), again yielding (B.50).

Case 2.3: yi+1(θ) > θ. If ∆θ > (αi − βi)Fi + ∆xi, then ∆Li+1 = 0 − (yi+1 − θ) =
−(αi−βi)Fi. Otherwise, Li+1(θ+∆θ) = yi+1+∆xi−θ−∆θ, and we get ∆Li+1 = ∆xi−∆θ.
Thus,

∆Li+1 = (∆xi −∆θ) + [∆θ −∆xi − (αi − βi)Fi]
+ . (B.53)

101

We may now combine (B.50), (B.51), (B.52), (B.53). Observe that in (B.53) ∆Li+1 ≥ −∆θ,
since we have already established that ∆xi ≥ 0 in Lemma 4. Moreover, ∆Li+1 = −(αi −
βi)Fi < 0 if ∆θ−∆xi−(αi−βi)Fi > 0, and ∆Li+1 = ∆xi−∆θ if ∆θ−∆xi−(αi−βi)Fi ≤ 0,
where ∆xi −∆θ ≤ 0 from Lemma 4. This yields (B.26).

Proof of Lemma 6: Proceeding as in the proof of Lemma 5, we get ∆Li+1 = 0 in
(B.50), (B.51), (B.52), i.e., in all cases except Case2.3 where (B.53) applies:

∆Li+1 = (∆xi −∆θ) + [∆θ −∆xi − (αi − βi)Fi]
+

Suppose the first overflow interval in the BP ends at Ar. Under the assumption ∆θ−∆xi−
(αi − βi)Fi ≤ 0 for all i = j, . . . , m, it follows from (B.17)-(B.18) that ∆xr = ∆θ and
∆Lr = −∆θ. Moreover, from Lemma 4, (B.24) gives ∆xi = ∆θ for all i = r + 1, . . . , m.
Therefore, (B.53) gives ∆Li+1 = 0 after every subsequent overflow interval and we get
Λk(∆θ) = ∆Lr = −∆θ.

102

Appendix C

Clustering Methods for
Multi-Resolution Simulation
Modeling

C.G. Cassandras1, C.G. Panayiotou
Dept of Manufacturing Eng., Boston University, Boston, MA 02215

G. Diehl
Network Dynamics, Inc., 10 Speen Street, Framingham, MA 01701

W-B. Gong, Z. Liu, and C. Zou
Dept of ECE, University of Massachusetts, Amherst, MA 01003

Abstract

Simulation modeling of complex systems is receiving increasing research attention over the
past years. In this paper, we discuss the basic concepts involved in multi-resolution sim-
ulation modeling of complex stochastic systems. We argue that, in many cases, using
the average over all available high-resolution simulation results as the input to subsequent
low-resolution modules is inappropriate and may lead to erroneous final results. Instead
high-resolution output data should be classified into groups that match underlying patterns
or features of the system behavior before sending group averages to the low-resolution mod-
ules. We propose high-dimensional data clustering as a key interfacing component between
simulation modules with different resolutions and use unsupervised learning schemes to re-
cover the patterns for the high-resolution simulation results. We give some examples to
demonstrate our proposed scheme.

Key words: Hierarchical simulation, multi-resolution simulation, clustering.

1This work was supported by AFRL under Contracts F30602-99-C-0056 and F30602-99-C-0057, by
AFOSR under contract F49620-98-1-0387 and by ERPI/DoD under contract WO8333-03.

103

C.1 Introduction

In modeling complex systems it is impossible to mimic every detail through simulation.
The common approach is to divide the whole system hierarchically into simpler modules,
each with different simulation resolution. In this context, the output of a module becomes
an input parameter to another, as illustrated in Figure C.1. The decomposed modules
can be high-resolution or low-resolution models. High-resolution, e.g. the usual discrete-
event simulation models, take detailed account of all possible events, but are generally
time consuming. Low-resolution (or coarser) modules, perform aggregate evaluation of the
module’s functionality (i.e., determine what would happen “on the average”). Such modules
are less time consuming and can be any of the following components: differential equations
(used for example in combat [76] and semiconductor simulations [54]), standard discrete-
event simulation, and fluid simulation [86]. Furthermore, the decomposed modules can also
be an optimization or decision support tool such as the one described by Griggs et. al[37].

Complex
System INPUT OUTPUT

MH-1

ML-2
MH-3

ML-1 MH-2

OUTPUT INPUT

.

.

.

.

.

.

…

.

.

ML-3

DECOMPOSITION

Figure C.1: Decomposition of complex systems

In a hierarchical setting, the lower level simulator (typically a high-resolution model)
generates output data which are then taken as input for the higher level simulator (typically
a low-resolution model). Hierarchical simulation is a common practice, but the design of
hierarchy is always ad hoc. A popular practice is to use the mean values of variables from the
lower level output as the input to the higher level. This implies that significant statistical
information (i.e., statistical fidelity) is lost in this process, resulting in potentially completely
inaccurate results. Especially when the ultimate output of the simulation process is of the
form 0 or 1 (e.g., “lose” or “win” a combat), such errors can provide the exact opposite of
the real output.

A systematic design and analysis framework is definitely needed. In this paper, we
present some fundamental components of such a framework. Our effort has been directed
at developing an interface between two simulation levels to preserve statistical fidelity to
the maximum extent that available computing power allows. Our research focus is to
use high-dimensional clustering techniques to group the high-resolution sample paths into
meaningful clusters and pass on to lower resolution module(s). In the following we explain

104

in more detail this approach.

Quite often, the system being simulated is such that the high-resolution model produces
so widely divergent outputs that it does not make sense to summarize such output through
a single average over the entire sample space. For example when simulating a combat,
it does not make any sense to take the average of the output under different weather
conditions. In such cases, we must subdivide the sample space into segments, and get
the high-resolution model to produce an appropriate input to the low-resolution model
for each such segment. Essentially, the low-resolution model will be broken down into a
number of distinct components, one for each segment of the sample space. To carry out
such a segmentation, the high-resolution paths first need to be grouped by their common
features. These features then determine and feed the corresponding low-resolution model.
The practice of classifying objects according to perceived similarities is the basis for much
of science and engineering, since organizing data into sensible groupings is one of the most
fundamental modes of understanding and learning. Clustering methods have been widely
applied in pattern recognition, image processing, and artificial intelligence. In this paper,
we deal with clustering methods for the preservation of statistics in hierarchical simulation.

In the following we describe the idea of using the Adaptive Resonance Theory (ART)
neural network for this purpose. ART neural networks were developed by Carpenter and
Grossberg [10] to understand the clustering function of the human visual system. They are
based on a competitive learning scheme and are designed to deal with the stability/plasticity
dilemma in clustering and general learning. It is clear that too much stability would lead
to a “stubborn” mind, while too much plasticity would lead to unstable learning. ART
neural networks successfully resolve this dilemma by matching the input pattern with the
prototypes. If the matching is not adequate, a new prototype is created. In this way,
previously learned memories are not eroded by new learning. In addition, the ART neural
network implements a feedback mechanism during learning to enhance stability.

Our experiments of using ART neural networks with combat simulation paths have been
quite successful [14]. We believe further improvement with the ART structure can lead to
a fundamental breakthrough in large data clustering, which is needed in complex systems
modeling. ART performs the clustering function based on the “angle” between the vectors
that describe the various input patterns. In some cases, as it will be discussed in the sequel,
this may pose a limitation of ART since the magnitude of an input pattern may contain
significant information which is ignored. To alleviate this shortfall we develop a heuristic
that allows the magnitude of the input pattern to play a role in the clustering function.
Furthermore, we are developing a generic numerical clustering tool, based on the ART
neural network, that can be used for many important problems in intelligent data analysis.

In general, the description of a typical sample path generated by a discrete-event system
requires a large amount of data since such sample paths are typically quite long. This implies
that the dimension of each input pattern will also be large. However for high dimensional
data most of the clustering algorithms (including ART) will involve huge computational
effort; thus they are not practical for simulation modeling purposes. For this reason we
develop a new clustering approach where we try to take advantage of the statistical structure
behind a typical sample path. For high dimensional complex systems we try to use a Hidden

105

Markov Model (HMM), which has be successfully used in speech recognition and other
areas[69], to characterize each observed sample path. In our approach, we use an HMM
to describe an arbitrary sample path and thus we cluster together all sample paths whose
corresponding HMM have a high similarity measure (to be defined in Section C.6). The
advantage of this approach is that the amount of data required to describe an HMM is
generally much smaller than the amount of data required to explicitly describe an observed
sample path and as a result the HMM approach is more efficient.

The remaining of this paper is organized as follows. Section C.2 discusses some of the is-
sues that arise when interfacing between modules with different resolution while Section C.3
presents an example where statistical fidelity is lost as a result of poor interfacing between
high- and low-resolution models, i.e., passing only averages from high- to low-resolution
models. Section C.4 briefly presents the ART clustering algorithm and Section C.5 describes
an ART based tool that we have developed and its application on a complex manufacturing
system. Section C.6 presents a new approach for clustering sample paths based on HMMs
and finally Section C.7 summarizes our work.

C.2 Interface between high- and low-resolution models

As mentioned above, the key issue in hierarchical simulation is the design of the interface
between the hierarchies. In a typical hierarchical simulation model, the lower lever consist of
a high-resolution model, such as the discrete event simulator, that generates several sample
paths given some input parameters u. The output of such simulation models is then used as
input to the higher level model (typically a low-resolution model). The question that arises,
the focal point of this paper, is how much and what information we need to pass from the
high-resolution to the low-resolution model such that statistical fidelity is preserved.

Note that each sample path generated by the high-resolution model is also a function
of some randomness ω (a random number sequence generated through some random seed).
Thus, any function evaluated over an observed sample path (e.g., h(u, ω)) is also a ran-
dom variable. Typically, we are not interested in the value of h(u, ω) obtained from a
single sample path but rather the expectation E{h(u, ω)}. Based on this, in hierarchical
simulation it is customary to use E{h(u, ω)} as an input parameter to the higher level
model as seen in Figure C.2. This is often highly unsatisfactory, since the mean often
obscures important features of the high-resolution output. Said in another way, we are
seeking E{L(h(u, ω))}, where L(·) is a function corresponding to the low-resolution model,
but what we end up evaluating by passing a single average is L(E{h(u, ω)}); however, in
general E{L(h(u, ω))} 6= L(E{h(u, ω)}).

To solve this problem we propose the use of clustering to identify groups of sample paths
that have some “common features”, and therefore, when averaged together do not cause
the loss of too much information. This approach in shown in Figure C.3. From the N
observed sample paths we identify m < N groups that share some common features and
determine m input parameters a1, · · · ,am where ai = E{hi(u, ω))} and hi(·) identifies all
sample paths in cluster i. Subsequently, each parameter ai is used as an input to a lower

106

INTERFACE

HIGH-RESOLUTION
MODEL

h(u,ωωωω)

INPUT: u

RANDOMNESS: ωωωω

LOW-RESOLUTION
MODEL

L(a)

h(u,ωωωω1),…, h(u,ωωωωN) Averaging:
a = E{ h(u,ωωωω) }

Parameter: a x = L(a)

N simulated
scenarios

Figure C.2: Hierarchical model interface: passing a simple average to the lower resolution
model

resolution model and finally we obtain E{L(ai)} over m low-resolution components, which
we claim is a better estimate of the overall system output than the one obtained using a
single average.

INTERFACE

HIGH-RESOLUTION
MODEL

h(u,ωωωω)

INPUT: u

RANDOMNESS: ωωωω

L-RM

L(a1)

h(u,ωωωω1),…, h(u,ωωωωN)

 a1
L(a1)

N simulated
scenarios

L-RM

L(am)

Clustering:
a1,…, am, m<N

L(am)

Averaging:

x = E{ L(ai) }

 am

…

Figure C.3: Hierarchical model interface: passing several averages to the lower resolution
model, one for each cluster

One may pose the following question: Since the desired output is of the form E{L(h(u, ω))}
why bother with clustering at all when we can evaluate L(h(u, ω)) for all N obtained sam-
ples and then perform the required expectation, especially since the low-resolution models
are generally easy to evaluate? The answer to this question lies in the derivation of the
low-resolution model. Typically, L(a) assumes that a is an expectation and therefore it
would be meaningless to use some quantity obtained from a single sample path.

107

C.3 Losing statistical fidelity: an example

In this section we present a simple example where the loss of statistical fidelity can result in
poor use of resources with possible catastrophic consequences. For this example, we assume
that we are interested in planning a mission that consists of several operations O1, · · · ,ON

as shown in Figure C.4. Due to the dependence between operations (e.g., O4 cannot start
until O2 and O3 are completed), it is required to know the time requirements of each
operation. So it is natural to ask the following question: How much time should be allocated
for each operation so that the probability of not completing an operation within the allocated
time (threshold/deadline) is less than P0?

.

.

.

Time

O1

O2

O3

O4
ON…

O1

O2

ON

O3

O4

…

Figure C.4: Operation Scheduling

The methodology for attacking this problem follows the hierarchical structure described
next. For every individual operation there exists a high-resolution model that simulates the
operation under different scenaria and returns the average m and standard deviation σ of
the time that it takes to complete it. Subsequently, the planners use a low-resolution model
to determine the time to allocate to the operation so that the probability of not meeting the
deadline is less than P0. One such low-resolution model is the Normal distribution, and the
probability of not meeting the scheduled deadline is given by the corresponding cumulative
distribution function. Hence, the problem is to find the threshold time T such that

F (T) = 1−
∫ T

−∞

1√
2πσ

e−
1
2(x−m

σ)2

dx ≤ P0 (C.1)

A typical operation in a mission involves the Aircraft Maintenance and Refueling System
(ARMS) shown in Figure C.5. In this system there are Q classes {C1, · · · , CQ} of aircraft
that can be refueled/maintained in one of B bases {B1, · · · , BB}. Before an aircraft receives
any service, it needs to travel to the corresponding base for a time τ which depends on the
initial location of the aircraft with respect to the base. Once an aircraft (say aircraft a)
arrives at the base, it is assigned one of the M priorities {P1, · · · , PM} and it is placed
in the corresponding queue. If a token is available at the token queue, it is assigned to a
which then proceeds to the next FIFO queue. Once all preceding aircraft are serviced, a

108

enters the server where it stays for a random period of time with mean 1
µbc

which depends
on the base b and the aircraft class c. For a given mission, it is required to service A
aircraft before the next operation can start. Therefore, one can use a simulation model
to determine the time it takes to process the A aircraft. Note that this processing time
depends on several parameters: (a) The number of bases and the routing algorithm that
determines what aircraft goes to what base. (b) The initial location of each aircraft and (c)
The service times of each class of aircraft at each base. These parameters are considered as
the initial conditions of each simulation (high-resolution model) and the output is going to
be used as an input to the low-resolution model (i.e., the Normal distribution).

C1

.

.

.

Aircraft
Classes

Priorities

CQ

T1

Token
Queue

Travel
Time

BASE 1

Base 1

Base 2

Base B

...

µ1c

Exit

...
P1

PM

TO NEXT OP.

Figure C.5: ARMS Model

C.3.1 Simulation Results

To test the clustering ideas we use the following simple problem. We assume that this
operation involves A = 100 aircraft that can be classified in Q = 3 classes. An aircraft is
classified as C1 with probability 0.25, as C2 with probability 0.25 and as C3 with probability
0.5. Each aircraft is routed probabilistically to one of two identical bases (B = 2). Each
base has a total of 3 tokens and each class C1, C2, C3 requires service for a random period
of time which is Erlang distributed with means 1.2, 1.8, 2.4 time units respectively. The
routing to each base depends on the initial “state of the world” W (e.g., current weather
conditions). We assume that W can only take two values 0 and 1 with probabilities 0.8
and 0.2 respectively. If W = 0, then the aircraft are routed to either Base 1 or Base 2 with
equal probability. On the other hand, when W = 1, all aircraft are routed to Base 1.

We simulated the ARMS model 65,000 times and obtained the histogram shown in
Figure C.6 for the time it takes to process all 100 aircraft. One observation is that the
average time to process all 100 aircraft is about 135 time units, however, the probability of

109

actually processing all aircraft in 135 hours is very small. From the simulation results we
also obtain an estimate of the standard deviation which was found equal to 33.9 time units.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240

Completion Time

P
ro

b
ab

ili
ty

Average

Figure C.6: Completion time of the first A = 100 aircraft

For planning purposes now, it is required to find the smallest deadline such that the
probability of missing it is less that P0 = 10%. Using the normal distribution with m = 135
and σ = 33.9 we find using (C.1) that the deadline should be set at 178.4 time units.
However, using all simulation results it is found that in order to meet the deadline with
probability equal to 90% it is necessary to set it at 200 time units. Therefore, use of the
simple averages has resulted in an error of about 11%. What is more dramatic is the
error in the probability of missing the deadline. If we use the deadline suggested by the
previous procedure on the data obtained through simulation, it is observed that the actual
probability of missing the deadline is not 10% as was originally desired but about 19.7%,
therefore there is an error of about 98%. What is also interesting is that this error was
obtained even though we passed both, first and second order statistics to the low-resolution
model. One might expect the errors to be even larger in cases where only first order statistics
are passed to the low-resolution model.

To solve this problem, we can use a simple clustering approach. Rather than using a
single average and standard deviation, we can form groups of data, determine the average
and standard deviation of each group and use those estimates to drive the low-resolution
model. For our simulation example it is natural to cluster the obtained data based on the
initial conditions of each simulation. Therefore, all data that were obtained when W = 0
form cluster 0 and data that were obtained when W = 1 form cluster 1. Using this grouping,
we obtain the following results

Cluster 0 Cluster 1
Samples 52,014 12,986

m 118.5 200.3
σ 8.7 10.4

110

Using these results, we form the weighted sum of two Normal distributions

f (́x) =
52, 014
65, 000

N(m0, σ0) +
12, 986
65, 000

N(m1, σ1) (C.2)

Finally, using trial and error we find that in order to meet the deadline with probability
10%, it is necessary to set the deadline at 200 time units which is in agreement with the
simulation results as well.

If clustering is used as an approach to preserve statistical fidelity, we need a system-
atic way of grouping sample paths into clusters, especially when there is no apparent way
to classify sample paths like the “world state” W we used in the above example. Such
approaches are presented in the next two sections.

C.4 Clustering using Adaptive Resonance Theory (ART)

Our work is motivated by our earlier path bundle grouping approach in hierarchical combat
simulation. In dealing with hierarchical simulation models one needs to consider grouping
sample paths generated from high-resolution models so as to provide appropriate input
statistics to the lower resolution model. This requires clustering very high dimensional data
vectors (the sample paths from high-resolution simulators). We have used this approach in
the Concept Evaluation Model (CEM) of the Concept Analysis Agency in order to group the
sample paths from the high-resolution Combat Sample Generator (COSAGE) and generate
the input to the lower resolution Attrition Calculation (ATCAL). Concrete numerical results
are reported in Guo et. al[39].

The algorithm used for clustering in the ART framework is closely related to the well-
known k-means clustering algorithm. Both use single prototypes to internally represent and
dynamically adapt clusters. The k-means algorithm clusters a given set of input patterns
into k groups. The parameter k thus specifies the coarseness of the partition. In contrast,
ART uses a minimum required similarity between patterns that are grouped within one
cluster. The resulting number of clusters depends on the distances (in terms of the applied
metric) between all input patterns, presented to the network during training cycles. This
similarity parameter is called vigilance and is denoted by ρ.

The basic ART architecture consists of the input layer F1, the output/cluster layer F2

and the reset mechanism which controls the degree of similarity required among patterns
that are placed in the same cluster. F1 has n input units, thus each input pattern must have
dimension n, while the output layer consists of m units, therefore the maximum number of
clusters that can be generated by the network is m. Note that F2 is a competitive layer,
in other words only the unit with the largest input has an activation other than zero, and
therefore each unit corresponds to a different cluster. Furthermore, the input layer F1 is
subdivided into two sub-layers F1(a) the input portion and F1(b) the interface portion which
receives input from both the input layer F1(a) and the output layer F2.

111

In the ART algorithm, every input pattern, after some preprocessing, is compared to
each of the m prototypes which are stored in the network’s weights. If the degree of
similarity between the current input pattern I and the best fitting prototype J is at least as
high as a given vigilance ρ, prototype J is chosen to represent the cluster containing I; The
vigilance ρ defines the minimum similarity between an input pattern and the prototype of
the cluster it is associated with and is typically limited to the range [0, 1]. If the similarity
between I and the best fitting prototype J does not fit into the vigilance interval [ρ, 1], then
a new cluster has to be installed, where the current input is most commonly used as the
first prototype or “cluster center”. Otherwise, if one of the previously committed clusters
matches I well enough, its prototype is adapted by being slightly shifted towards the values
of the input pattern I. For a detailed description and analysis of the ART algorithm refer
to Carpenter and Grossberg [10] and Fausett [27].

Often, the level of detail of the input patterns may be different; some input patters may
have less than n non-zero components. In ART this has motivated the use of a similarity
measure that is independent of the magnitude of the input pattern and so input patterns
are first normalized before presented to the neural network. Rather, the similarity measure
is based on the angle between the vector that corresponds to an input pattern and the
cluster’s prototype vector as illustrated in Figure C.7 for a two-dimensional input vector
(n = 2). This figure shows the jth cluster prototype vector Wj and the range of the cluster
which extends β radians above and below the angle of Wj . Note that β is a function of the
vigilance parameter ρ; the larger the value of ρ the higher similarity is required among the
vectors that are clustered in the same cluster and thus, the smaller the angle β. For this
example, the angle between the input pattern I and Wj is φ > β therefore I will not be
assigned to cluster j.

i2,wj2

i1,wj1

Wj

β
β

Cluster j

0

I

φ

Figure C.7: Similarity in ART is measured by the angle

112

C.5 An application to a “real-world” complex system

As mentioned earlier, we are also developing a generic clustering tool, the Intelligent Clus-
tering Interface (ICI) and we encountered an interesting opportunity to test it in the case of
a complex manufacturing system. In particular, in working with a large metal manufacturer
we were faced with the issue of supplying a low-resolution model of a large plant with the
necessary parameters for running it. These parameters are to be obtained from detailed
(high-resolution) models of the process plans (or flowpaths) for over 10,000 products man-
ufactured in the plant. A flowpath is a specific sequence of Production Centers (PCs) with
different processing characteristics at each PC (there are over 100 such PCs). Thus, each
flowpath may be thought of as corresponding to a unique product; however, since the low-
resolution model cannot possibly handle input data for over 10,000 flowpaths, the objective
is to group products with similar flowpaths. For purposes such as forecasting, capacity
planning, and lead-time estimation (among others) it is in fact indispensable to have such
product groups available: not only it is conceptually infeasible to work with over 10,000
distinct products, it is also practically impossible to input such high-dimensional data for
over 10,000 products and 100 PCs into modeling and decision support tools. Moreover,
even if there were an automated way to accomplish this, it would be unrealistic to expect
anyone to manipulate or interpret output data with information such as inventory levels
and lead times for many thousands of distinct products.

In the effort to establish groups (or clusters) of products based on similarities in flow-
paths and processing characteristics, an initial project was set up with plant experts given
the task to “manually” create such groupings. The project was quickly abandoned: in ad-
dition to the sheer product volume which makes this task prohibitive, it is also difficult to
rationally quantify “similarities” in flowpaths and processing data without some systematic
means of doing so. We were able to accomplish this task using the clustering techniques we
have developed and obtained a “compression” of over 10,000 products to 25-100 product
clusters (depending on the aggregation accuracy required, which is completely controlled
by the analyst). Of particular interest is the fact that the plant experts who reviewed the
results we obtained found “by hindsight” the clusters defined by our method consistent with
their expectations.

Unlike other applications of ART, in this case, the magnitude of the vector corresponding
to an input pattern contains important information that should be used when grouping
products into clusters. For example, the input vectors corresponding to two products may
have the same orientation (same flowpath) but differ in their magnitude (the time spent at
PC’s differ by orders of magnitude). For this reason we developed an enhancement to the
ART algorithm that allows us to include magnitude information in the clustering process
as described next.

C.5.1 ART Enhancements

As already pointed out, the basic mechanism through which the ART neural network per-
forms clustering is by grouping them using an “angle” criterion. This is illustrated in

113

Figure C.8 where we used the ICI tool to cluster 200 2-dimensional vectors. For a vigilance
parameter value of ρ = 0.99, three clusters were obtained as seen in the figure.

Figure C.8: 200 2-dim. vectors, no extra dimension, ρ = 0.99

It is reasonable to expect, however, that data vectors with almost identical orientation
but significantly different magnitudes (prior to normalization) should be distinguishable. In
order to introduce this capability into the ART setting, we have introduced the following
enhancement: Each data vector is provided with an additional component (thus enlarging
its dimensionality from n to n+1) which is the Euclidian norm of the n-dimensional vector
(x1, . . . , xn), i.e., (x2

1+. . .+x2
n)1/2. This forces the ART neural network to include magnitude

information in its clustering algorithm. This is clearly seen in Figure C.9, where the same
data vectors as in Figure C.8 have been clustered with this additional component. There
are still three clusters, but one can see that the contents and features of the clusters have
changed.

Figure C.9: Same 200 2-dim. vectors, WITH extra dimension, ρ = 0.99

An alternative is to apply the same idea by individually reclustering each of the clusters
originally obtained. Thus, within each cluster we may now distinguish between data vectors
in terms of their magnitude, as illustrated in Figure C.10 where 10 clusters are now obtained
by reclustering each of the three clusters in Figure C.8 using a magnitude component.

Finally, note that within the ICI tool there is the capability of providing a “weight” to
each component of the n-dimensional data vectors. Thus, by controlling the value of this

114

Figure C.10: Same 200 2-dim. vectors, WITH extra dim. reclustered within each of the 3
original clusters, ρ = 0.99

weight for the extra component added, we can adjust the importance to be attributed to
the magnitude of a vector as opposed to just its orientation in n dimensions.

C.6 Using Hidden Markov Model for Sample Path Cluster-
ing

A sample path generated by a discrete-event system consists of a sequence {(ek, tk)},
k = 1, 2, · · · ,K, where ek denotes the kth event and tk its corresponding occurrence time.
For typical systems, the number of observed events K is very large and thus clustering
sample paths “directly” by making explicit use of the entire event sequence {(ek, tk)}, re-
quires that the input vectors corresponding to such sample paths should be of a very large
dimension. This impose a significant computational burden on any clustering algorithm
including ART. To solve this problem we try to take advantage of the structure of discrete-
event sample paths. In our experiments, we observe a sample path that is generated by
an arbitrary system and try to describe it by some Markov Chain, thus we use the theory
of Hidden Markov Models [69] (HMMs) to identify its parameters. Once we identify the
HMM parameters we define a similarity measure among each obtained HMM and cluster
together all sample paths with the largest similarity. The advantage of this approach is
that the amount of information required to describe an HMM is considerably less than the
amount of information required to describe a sample path. Even though the identification
of the HMM parameters require some additional computational overhead, our experiments
have shown that overall, the HMM approach is considerably faster than direct clustering
approaches. Incidentally, we point out that this approach makes no a priori assumptions
about the statistical distribution of the data to be analyzed.

Next, we demonstrate the HMM clustering approach through an example. For the
purposes of our example, we assume that we have three systems S1, S2 and S3. When
simulated, each system generates sample paths Qij , i = {1, 2, 3}, j = 1, 2, · · · where Qij

corresponds to the jth sample path generated by system Si. When clustering sample paths,
it would be reasonable to expect that sample paths generated from the same system are

115

grouped in the same cluster. In this example, we generate 9 sample paths, 3 from each
system and develop a way to distinguish between sample paths obtained from different
systems. To achieve this, we first associate an HMM λi = (Ai, Bi, πi) to each sample path
i = 1, · · · , 9, where we use the notation of Rabiner[69]. Ai denotes the state transition
probability, Bi denotes the observation symbol probability at every state and πi denotes
the initial state distribution. To complete the definition of the HMM, we assume the it
consists of N states and that at every state we can observe any of the M possible symbols.

To construct the three systems Si, i = 1, 2, 3 we assume that they consist of a Markov
Chain with Ni states (N1 = 20, N2 = 10 and, N3 = 10) and randomly generate a state tran-
sition probability matrix Pi = [pi

kl], k, l = 1, 2, · · · , Ni. Furthermore, we randomly generate
the parameters µi

k, k = 1, 2, · · · , Ni, so that the exponentially distributed sojourn time for
state k has mean 1/µi

k. However, not all real systems are memoryless, therefore, to make
our example more interesting we introduce some “special states” where state transitions out
of such states are not made according to the state transition probability but rather through
the set of rules we describe next.

For S1, we assume that states 1, · · · , 5 are special states and state transitions out of
these states are made according to the following rules:

State 1: System stays at state 1 for 3 consecutive, exponentially distributed sojourn time
intervals, each with mean 1/µ1

1. Then it jumps to state 10.

State 2: System stays at state 2 a deterministic sojourn time interval of length 2/µ1
2. Then

it jumps to state n according to the state visited before arriving at state 2, denoted
by S−1:

n =
{

15 if S−1 ∈ {1, · · · , 10},
4 if S−1 ∈ {10, · · · , 20}.

State 3: System stays at state 3 for 5 consecutive sojourn time intervals, each exponentially
distributed with mean 1/µ1

3. Then it transfers according to state transition probability
matrix P1. Note that after the system has spent 5 sojourn intervals at state 3, it may
return to state 3 with probability p1

33 for 5 more intervals.

State 4: System stays at state 4 for 1 exponentially distributed sojourn time interval with
mean 1/µ1

4. Then it jumps to state n according to the state visited before arriving at
state 4:

n =

6 if S−1 ∈ {1, · · · , 5},
11 if S−1 ∈ {6, · · · , 10},
16 if S−1 ∈ {11, · · · , 15},
1 if S−1 ∈ {16, · · · , 20},

State 5: System stays at state 5 for a deterministic sojourn interval of length 1/µ1
5, and

then transfers according to the state transition probability matrix P1.

Both S2 and S3 have only 2 special states, states 1 and 2 and the rules out of these
states are the following:

116

State 1: System stays at state 1 for 2 sojourn time interval, each of which is exponentially
distributed with mean 1/µi

1, i = 2, 3. Then it transfers to state n according to the
previous state visited:

n =

7 if S−1 ∈ {1, 2},
9 if S−1 ∈ {3},
5 if S−1 ∈ {4, · · · , 10},

State 2: System stays at state 2 for a deterministic amount of time equal to 1/µi
2, i = 2, 3,

and then transfers to state 5.

For each of the 9 sample paths we generate by S1, S2, and S3, we adjust the HMM
parameters λj , j = 1, · · · , 9, to maximize the probability that the jth observed sample
path was obtained from λj . This is referred to as the training problem and is tackled by
repeatedly solving what is described as “Problem 3” in Rabiner[69]. For the purposes of
this experiment, we assume that each HHM consists of N = 6 states. In addition, we
assumed that the actual state visited by each of the systems is not observable. Rather, the
observation symbols at each state are the state holding times. These can generally take any
positive value so to determine Bi, the observed symbol probability, we quantize all possible
values into M = 64 intervals.

Once we determine the HMM parameters for all sample paths, λi, i = 1, · · · , 9, we use
the similarity measure also defined in Rabiner[69] to determine which HMMs and conse-
quently which sample paths are sufficiently similar so that they can be clustered together.
The similarity measure is defined for any pair of HMMs λi and λj as:

σ(λi, λj) = exp{D(λi, λj)} (C.3)

where

D(λi, λj) =
log Pr(Oj |λi) + log Pr(Oi|λj)− log Pr(Oi|λi)− log Pr(Oj |λj)

2TK
(C.4)

is what Rabiner [69] called the distance measure. Pr(Oi|λj) is the probability of the obser-
vation sequence Oi, i.e., the sequence of state holding times that correspond to the sample
path Qi, was generated by HMM λj . For computational convenience, we break any sample
path into K smaller sample paths of length T and thus compute

log Pr
(
Oi|λj

)
=

K∑

k=1

log Pr
(
Oi

k|λj

)

where Pr
(
Oi

k|λj

)
is the probability of the kth sequence of sample path i was generated by

HMM λi. Also, note that the similarity measure is symmetric, that is σ(λi, λj) = σ(λj , λi);
a desired property for a good similarity measure.

For the similarity results shown in Table C.1, the length of each of the 9 sample path is
10, 000 events. In addition, the parameters µi

j , i = 1, 2, 3, j = 1, · · · , Ni are generated such

117

Table C.1: Similarity measure among the HMMs corresponding to each of the 9 sample
paths.

σ(i, j) HMM 1 HMM 2 HMM 3 HMM 4 HMM 5 HMM 6 HMM 7 HMM 8 HMM 9
HMM 1 1 0.760 0.769 0.776 0.950 0.950 0.798 0.804 0.794
HMM 2 0.760 1 0.940 0.949 0.772 0.776 0.837 0.839 0.835
HMM 3 0.769 0.940 1 0.947 0.777 0.785 0.850 0.847 0.847
HMM 4 0.776 0.949 0.947 1 0.787 0.793 0.847 0.844 0.844
HMM 5 0.950 0.772 0.777 0.787 1 0.951 0.799 0.804 0.799
HMM 6 0.950 0.776 0.785 0.793 0.951 1 0.815 0.820 0.809
HMM 7 0.798 0.837 0.850 0.847 0.799 0.815 1 0.945 0.943
HMM 8 0.804 0.839 0.847 0.844 0.804 0.820 0.945 1 0.950
HMM 9 0.794 0.835 0.847 0.844 0.799 0.809 0.943 0.950 1

that 1/µi
j are uniformly distributed between 4 and 50. Sample paths Q1, Q5 and Q6 are

generated by S1. Q2, Q3, and Q4 are generated by S2 while Q7, Q8 and Q9 are generated
by S3.

Finally, we cluster together all sample paths that correspond to HMMs with similarity
measure greater than a threshold value V . Note that V corresponds to the required degree
of similarity for two sample paths to be clustered together, like the vigilance parameter ρ
of ART. For example, if V = 0.9, then the similarity measures exceeding V are:

Cluster 1: σ(1, 5), σ(1, 6), σ(5, 6)
Cluster 2: σ(2, 3), σ(2, 4), σ(3, 4)
Cluster 3: σ(7, 8), σ(7, 9), σ(8, 9)

therefore, the HMM method has successfully classified all sample paths.

C.7 Conclusion

In this paper, we discuss the basic concepts involved in multi-resolution simulation modeling
of complex stochastic systems and demonstrate that, using the average over all available
high-resolution simulation results as the input to subsequent low-resolution modules is inap-
propriate and can lead to erroneous final results. Instead high-resolution output data should
be clustered into groups that match underlying features of the system behavior before feed-
ing group averages to low-resolution modules. In addition, we propose two approaches for
performing high-dimensional data clustering based on neural networks and Hidden Markov
Models.

118

Appendix D

A Generalized ‘Surrogate Problem’
Methodology for On-Line
Stochastic Discrete Optimization

Kagan Gokbayrak and Christos G. Cassandras1

Department of Manufacturing Engineering, Boston University, Boston, MA 02215

Abstract

We consider stochastic discrete optimization problems where the decision variables are non-
negative integers and propose a generalized “surrogate problem” methodology that modifies
and extends previous work in [33]. Our approach is based on an on-line control scheme which
transforms the problem into a “surrogate” continuous optimization problem and proceeds
to solve the latter using standard gradient-based approaches while simultaneously updating
both actual and surrogate system states. In contrast to [33], the proposed methodology
applies to arbitrary constraint sets. It is shown that, under certain conditions, the solution
of the original problem is recovered from the optimal surrogate state. Applications of
this approach include solutions to multicommodity resource allocation problems, where,
exploiting the convergence speed of the method, one can overcome the obstacle posed by
the presence of local optima.

1This work was supported in part by the National Science Foundation under Grants EEC-95-27422 and
ACI-98-73339, by AFOSR under contract F49620-98-1-0387, by the Air Force Research Laboratory under
contract F30602-99-C-0057 and by EPRI/ARO under contract WO8333-03.

119

We consider stochastic discrete optimization problems where the decision variables are
non-negative integers. Problems of this type abound, for instance, in manufacturing sys-
tems and communication networks. In a manufacturing system setting, examples include
the classic buffer allocation problem, where K buffer slots are to be distributed over N
manufacturing workstations so as to optimize performance criteria involving throughput
or mean system time; a variant of this problem involving the use of kanban (rather than
buffer slots) to be allocated to different workstations [21]; and determining the optimal lot
size for each of N different part types sharing resources in a production facility with setup
delays incurred when a switch from a lot of one part type to another occurs [40]. In a
communication network setting, similar buffer allocation issues arise, as well as transmis-
sion scheduling problems where a fixed number of time slots forming a “frame” must be
allocated over several call types [6]. Such optimization problems are also very common in
any discrete resource allocation setting [44], as well as in control policies for Discrete Event
Systems (DES) that are parameterized by discrete variables such as thresholds or hedging
points.

The optimization problem we are interested in is of the general form

min
r∈Ad

Jd(r) = E[Ld(r, ω)] (D.1)

where r ∈ ZN
+ is a decision vector or “state” and Ad represents a constraint set. In a

stochastic setting, let Ld(r, ω) be the cost incurred over a specific sample path ω when
the state is r and Jd(r) = E[Ld(r, ω)] be the expected cost of the system operating under
r. The sample space is Ω = [0, 1]∞, that is, ω ∈ Ω is a sequence of random numbers
from [0, 1] used to generate a sample path of the system. The cost functions are defined
as Ld : Ad × Ω → R and Jd : Ad → R, and the expectation is defined with respect to a
probability space (Ω,=, P) where = is an appropriately defined σ-field on Ω and P is a
conveniently chosen probability measure. In the sequel, ‘ω’ is dropped from Ld(r, ω) and,
unless otherwise noted, all costs will be over the same sample path.

The problem (D.1) is a notoriously hard stochastic integer programming problem. Even
in a deterministic setting, where Jd(r) = Ld(r), this class of problems is NP-hard (see [44],
[68] and references therein). In some cases, depending upon the form of the objective func-
tion Jd(r) (e.g., separability, convexity), efficient algorithms based on finite-stage dynamic
programming or generalized Lagrange relaxation methods are known (see [44] for a compre-
hensive discussion on aspects of deterministic resource allocation algorithms). Alternatively,
if no a priori information is known about the structure of the problem, then some form of
a search algorithm is employed (e.g., Simulated Annealing [1], Genetic Algorithms [43]).

When the system operates in a stochastic environment (e.g., in a resource allocation
setting, users request resources at random time instants or hold a particular resource for a
random period of time) and no closed-form expression for E[Ld(r)] is available, the problem
is further complicated by the need to estimate E[Ld(r)]. This generally requires Monte Carlo
simulation or direct measurements made on the actual system. Most known approaches are
based on some form of random search, as in algorithms proposed by Yan and Mukai [87],
Gong et al [36], Shi and Olafsson [73]. Another recent contribution to this area involves
the ordinal optimization approach presented in [42] and used in [18] to solve a class of

120

resource allocation problems. Even though the approach in [18] yields a fast algorithm, it is
still constrained to iterate so that every step involves the transfer of no more than a single
resource from one user to some other user. One can expect, however, that much faster
improvements can be realized in a scheme allowed to reallocate multiple resources from
users whose cost-sensitivities are small to users whose sensitivities are much larger. This is
precisely the rationale of most gradient-based continuous optimization schemes, where the
gradient is a measure of this sensitivity.

With this motivation in mind, a new approach was proposed in [33] based on the fol-
lowing idea: The discrete optimization problem (D.1) is transformed into a “surrogate”
continuous optimization problem which is solved using standard gradient-based methods;
its solution is then transformed back into a solution of the original problem. Moreover, this
process is designed explicitly for on-line operation. That is, at every iteration step in the
solution of the surrogate continuous optimization problem, the surrogate continuous state
is immediately transformed into a feasible discrete state r. This is crucial, since whatever
information is used to drive the process (e.g., sensitivity estimates) can only be obtained
from a sample path of the actual system operating under r. It was shown in [33] that for re-
source allocation problems, where the constraint set is of the form Ad =

{
r :

∑N
i=1 ri = K

}
,

the solution of (D.1) can be recovered from the solution of the surrogate continuous opti-
mization problem; the latter is obtained using a stochastic approximation algorithm which
converges under standard technical conditions.

The contributions of this paper are the following. First, we generalize the method-
ology presented in [33] to problems of the form (D.1) which are not necessarily limited
to constraints such as Ad =

{
r :

∑N
i=1 ri = K

}
, including the possibility of unconstrained

problems. Second, we modify the approach developed in [33] in order to improve its compu-
tational efficiency. In particular, computational efficiency is gained in the following respects:

1. A crucial aspect of the “surrogate problem” method is the fact that the surrogate
state, denoted by ρ ∈ RN

+ , can be expressed as a convex combination of at most N +1
points in Ad, where N is the dimensionality of r ∈ Ad. Determining such points
is not a simple task. In [33], this was handled using the Simplex Method of Linear
Programming, which can become inefficient for large values of N . In this paper, we
show that for any surrogate state ρ, a selection set S(ρ) of such N + 1 points, not
necessarily in Ad, can be identified through a simple algorithm of linear complexity.
Moreover, this algorithm applies to any problem of the form (D.1), not limited to any
special type of constraint set Ad.

2. In solving the surrogate continuous optimization problem, a surrogate objective func-
tion is defined whose gradient is estimated in order to drive a stochastic approximation
type of algorithm. The gradient estimate computation in [33] involves the inversion
of an N ×N matrix. In this paper, we show that this is not needed if one makes use
of the selection set S(ρ) mentioned above, and the gradient estimate computation is
greatly simplified.

The price to pay for the generalization of the approach is the difficulty in establishing

121

a general result regarding the recovery of the solution of (D.1) from the solution of the
surrogate problem as was done in our earlier work [33]. We are able, however, to still do so
for two interesting cases. Despite this difficulty, the empirical evidence to date indicates that
this generalized methodology provides the optimal solutions under appropriate technical
conditions guaranteeing convergence of a stochastic approximation scheme.

A third contribution of this paper is in tackling a class of particularly hard multicommod-
ity discrete optimization problems, where multiple local optima typically exist. Exploiting
the convergence speed of the surrogate method, we present, as an application of the proposed
approach, a systematic means for solving such combinatorially hard problems.

The rest of the paper is organized as follows. In Section D.1, we give an overview of our
basic approach. In Section D.2, we present the key results enabling us to transform a discrete
stochastic optimization problem into a “surrogate” continuous optimization problem. In
Section D.3, we discuss the construction of appropriate “surrogate” cost functions for our
approach and the evaluation of their gradients. Section D.4 discusses how to recover the
solution of the original problem from that of the “surrogate” problem. In Section D.5, we
present the detailed optimization algorithm and discuss its convergence properties. Some
numerical examples and applications are presented in Section D.6.

D.1 Basic approach for on-line control

In the sequel, we shall adopt the following notational conventions as in [33]. We shall use
subscripts to indicate components of a vector (e.g., ri is the ith component of r). We shall
use superscripts to index vectors belonging to a particular set (e.g., rj is the jth vector
within a subset of ZN

+ that contains such vectors). Finally, we reserve the index n as a
subscript that denotes iteration steps and not vector components (e.g., rn is the value of r
at the nth step of an iterative scheme, not the nth component of r).

The expected cost function Jd(r) is generally nonlinear in r, a vector of integer-valued
decision variables, therefore (D.1) is a nonlinear integer programming problem. One com-
mon method for solving this problem is to relax the integer constraints on all ri so that
they can be regarded as continuous (real-valued) variables and then to apply standard op-
timization techniques such as gradient-based algorithms. Let the “relaxed” set Ac contain
the original constraint set Ad and define L̄c : RN

+ × Ω → R to be the cost function over a
specific sample path. As before let us drop ‘ω’ from L̄c(ρ, ω) and agree that unless otherwise
noted all costs will be over the same sample path. The resulting “surrogate” problem then
becomes: Find ρ∗ that minimizes the “surrogate” expected cost function Jc : RN

+ → R over
the continuous set Ac, i.e.,

Jc(ρ∗) = min
ρ∈Ac

Jc(ρ) = E[L̄c(ρ)] (D.2)

where ρ ∈ RN
+ , is a real-valued state, and the expectation is defined on the same probability

space (Ω,=, P) as described earlier. Assuming an optimal solution ρ∗ can be determined,
this state must then be mapped back into a discrete vector by some means (usually, some

122

form of truncation). Even if the final outcome of this process can recover the actual r∗ in
(D.1), this approach is strictly limited to off-line analysis: When an iterative scheme is used
to solve the problem in (D.2) (as is usually the case except for very simple problems of limited
interest), a sequence of points {ρn} is generated; these points are generally continuous states
in Ac, hence they may be infeasible in the original discrete optimization problem. Moreover,
if one has to estimate E[L̄c(ρ)] or ∂E[L̄c(ρ)]

∂ρ through simulation, then a simulation model of
the surrogate problem must be created, which is also not generally feasible. If, on the other
hand, the only cost information available is through direct observation of sample paths of
an actual system, then there is no obvious way to estimate E[L̄c(ρ)] or ∂E[L̄c(ρ)]

∂ρ , since this
applies to the real-valued state ρ, not to the integer-valued actual state r.

As in [33], we adopt here a different approach intended to operate on line. In particular,
we still invoke a relaxation such as the one above, i.e., we formulate a surrogate continuous
optimization problem with some state space Ac ⊂ RN

+ and Ad ⊂ Ac. However, at every
step n of the iteration scheme involved in solving the problem, both the continuous and
the discrete states are simultaneously updated through a mapping of the form rn = fn(ρn).
This has two advantages: First, the cost of the original system is continuously adjusted
(in contrast to an adjustment that would only be possible at the end of the surrogate
minimization process); and second, it allows us to make use of information typically needed
to obtain cost sensitivities from the actual operating system at every step of the process.

The basic scheme we consider is the same as in [33] and is outlined below for the sake
of self-sufficiency of the paper. Initially, we set the “surrogate system” state to be that of
the actual system state, i.e.,

ρ0 = r0 (D.3)

Subsequently, at the nth step of the process, let Hn(ρn, rn, ωn) denote an estimate of the
sensitivity of the cost Jc(ρn) with respect to ρn obtained over a sample path ωn of the
actual system operating under allocation rn; details regarding this sensitivity estimate will
be provided later in the paper. Two sequential operations are then performed at the nth
step:

1. The continuous state ρn is updated through

ρn+1 = πn+1[ρn − ηnHn(ρn, rn, ωn)] (D.4)

where πn+1 : RN → Ac is a projection function so that ρn+1 ∈ Ac and ηn is a “step
size” parameter.

2. The newly determined state of the surrogate system, ρn+1, is transformed into an
actual feasible discrete state of the original system through

rn+1 = fn+1(ρn+1) (D.5)

where fn+1 : Ac → Ad is a mapping of feasible continuous states to feasible discrete
states which must be appropriately selected as will be discussed later.

123

One can recognize in (D.4) the form of a stochastic approximation algorithm (e.g., [50])
that generates a sequence {ρn} aimed at solving (D.2). However, there is an additional
operation (D.5) for generating a sequence {rn} which we would like to see converge to r∗

in (D.1). It is important to note that {rn} corresponds to feasible realizable states based
on which one can evaluate estimates Hn(ρn, rn, ωn) from observable data, i.e., a sample
path of the actual system under rn (not the surrogate state ρn). We can therefore see that
this scheme is intended to combine the advantages of a stochastic approximation type of
algorithm with the ability to obtain sensitivity estimates with respect to discrete decision
variables. In particular, sensitivity estimation methods for discrete parameters based on
Perturbation Analysis (PA) and Concurrent Estimation [41],[20] are ideally suited to meet
this objective.

Before addressing the issue of obtaining estimates Hn(ρn, rn, ωn) necessary for the opti-
mization scheme described above to work, there are two other crucial issues that form the
cornerstones of the proposed approach. First, the selection of the mapping fn+1 in (D.5)
must be specified. Second, a surrogate cost function L̄c(ρ, ω) must be identified and its
relationship to the actual cost Ld(r, ω) must be made explicit. These issues are discussed
next, in Sections D.2 and D.3 respectively for the problem (D.1), which, as previously men-
tioned, is not limited to the class of resource allocation problems considered in our earlier
work [33].

D.2 Continuous-to-discrete state transformations

Let us first define C(ρ), the set of vertices of the unit “cube” around the surrogate state as

C(ρ) = {r|∀i ri ∈ {bρic, dρie}}
where, for any x ∈ R, dxe and bxc denote the ceiling (smallest integer ≥ x) and floor
(largest integer ≤ x) of x respectively. Note that when ρi ∈ Z, all the ith components of
the cube elements are the same (= ρi) decreasing the dimension of the cube by one. In
order to avoid the technical complications due to integer components in ρ, let us agree that
whenever this is the case we will perturb the integer components to obtain a new state ρ̂
whose components are non-integer, and then relabel this state as ρ.

Next, we define N (ρ), the set of all feasible neighboring discrete states in C(ρ) as:

N (ρ) = C(ρ) ∩Ad (D.6)

A more explicit and convenient characterization of the set N (ρ) is

N (ρ) = {r|r = bρc+ r̃ for all r̃ ∈ {0, 1}N} ∩Ad

where bρc is the vector whose components are bρci = bρic. In other words, N (ρ) is the set
of vertices of the unit “cube” containing ρ that are in the feasible discrete set Ad.

In earlier work (see [33]), we limited ourselves to resource allocation problems with linear
capacity constraints. For this class of problems, we used Ac = conv(Ad) as the feasible set

124

in the “surrogate” continuous state space. When the feasible set Ad is not a polyhedron,
the set Ac = conv(Ad) may include discrete states that are not in Ad. In order to prevent
this and to generalize the approach, we modify the definition of Ac, given the set N (ρ), as
follows:

Ac =
⋃

ρ∈RN
+

conv(N (ρ)) (D.7)

Note that Ac ⊆ conv(Ad) is the union of the convex hulls of feasible discrete points in every
cube, and is not necessarily convex. Note also that the definition reduces to Ac = conv(Ad)
when Ad is formed by all the discrete points in a polyhedron.

Now we are ready to define the set of transformation functions Fρ as follows:

Fρ = {f |f : Ac → Ad, (f(ρ))i ∈ {dρie, bρic}, i = 1, . . . , N}

The purpose of f ∈ Fρ is to transform some continuous state vector ρ ∈ Ac into a “neigh-
boring” discrete state vector r ∈ N (ρ) obtained by seeking dρie or bρic for each component
i = 1, . . . , N . The existence of such a transformation is guaranteed by the projection map-
ping π in (D.4), which ensures that ρ ∈ Ac, therefore N (ρ) is non-empty. A convenient
element of Fρ that we shall use throughout the paper is

f(ρ) = arg min
r∈N (ρ)

‖ρ− r‖

which maps the surrogate state ρ to the closest feasible neighbor in N (ρ). However, our
analysis is certainly not limited to this choice.

A key element of our approach is based on the fact that ρ can be expressed as a convex
combination of at most N +1 points in C(ρ), as shown in Theorem 11 below. Given that the
cardinality of C(ρ) is combinatorially explosive, i.e., 2N , determining the set of these points
is not a simple task. In [33], it was shown that such a set of feasible points, NN (ρ), a subset
of N (ρ), can be determined using the Simplex Method when problems of the form (D.1) are
limited to constraint sets Ad =

{
r :

∑N
i=1 ri = K

}
. In what follows, we provide a different

approach based on defining a selection set S(ρ) which (a) allows us to specify the N + 1
points in C(ρ) that define a set whose convex hull includes ρ for problems with arbitrary Ad,
(b) is much simpler than the Simplex Method, and (c) simplifies the gradient estimation
procedure as we will see in Section D.3. An important distinction between NN (ρ) and S(ρ)
is that the latter is not limited to include only feasible points r ∈ N (ρ).

Definition 1 The set S(ρ) ⊆ C(ρ) is a selection set if it satisfies the following conditions:

• |S(ρ)| = N + 1

• The surrogate state ρ resides in the convex hull of S(ρ), i.e., there exists {αi} such
that

ρ =
N∑

i=0

αir
i, with

N∑

i=0

αi = 1, αi ≥ 0, ri ∈ S(ρ)

125

• The vectors in the set
{
r̄i|r̄i =

[
1 ri

]
, ri ∈ S(ρ)

}
are linearly independent.

Next we will show the existence of the selection set S(ρ) by a constructive proof.

Theorem 11 A selection set S(ρ) exists for any ρ ∈ RN
+ .

Proof. We construct a selection set S(ρ) for ρ = [ρ1, ..., ρN] as described below and prove
that it satisfies all three conditions in Definition 1.

Let us define ei as the N -dimensional unit vector whose ith component is 1; the residual
vector ρ̃ = ρ − bρc; and the N -dimensional ordering vector o such that ok ∈ {1, ..., N},
k = 1, ..., N , and ok satisfies

ρ̃ok
≤ ρ̃ok+1

for k = 1, ..., N − 1

Note that the definition of ρ̃ implies that 0 < ρ̃j < 1 for all j = 1, ..., N . Next, we define

r̃ol =
N∑

k=l

eok
(D.8)

and

αol
=

{
ρ̃ol

− ρ̃ol−1
l > 1

ρ̃o1
l = 1

≥ 0 (D.9)

It follows from (D.9) that we can write

ρ̃ol
=

l∑

k=1

αok
(D.10)

and note that

ρ̃oN
=

N∑

k=1

αok
=

N∑

j=1

αj

Using (D.9) we have defined αi for i = 1, . . . , N . In addition, we now define

α0 = 1−
N∑

i=1

αi = 1− ρ̃oN
> 0 (D.11)

Similarly, (D.8) defines r̃i for i = 1, . . . , N . In addition, we define

r̃0 = 0 (D.12)

where 0 = [0...0] is the N -dimensional zero vector. Note that we can write

ρ̃ =
N∑

l=1

ρ̃ol
eol

(D.13)

126

Combining (D.10) and (D.13) and changing the summation indices gives

ρ̃ =
N∑

l=1

l∑

k=1

αok
eol

=
N∑

k=1

N∑

l=k

αok
eol

(D.14)

Then, using (D.8) we get

ρ̃ =
N∑

k=1

αok
r̃ok =

N∑

j=1

αj r̃
j (D.15)

Next, we define
rj = bρc+ r̃j (D.16)

Then, we can write

N∑

j=0

αjr
j =

N∑

j=0

αj bρc+
N∑

j=0

αj r̃
j

= bρc
N∑

j=0

αj +
N∑

j=0

αj r̃
j

Observing that
∑N

j=0 αj = 1 from (D.11), and that

N∑

j=0

αj r̃
j =

N∑

j=1

αj r̃
j + α0r̃

0 = ρ̃

from (D.12) and (D.15), it follows that

N∑

j=0

αjr
j = bρc+ ρ̃ = ρ (D.17)

i.e., the convex hull formed by S(ρ) = {r0, ..., rN}, with ri defined in (D.16), contains
ρ. This satisfies the second condition in Definition 1. Moreover, from (D.8), (D.12), and
(D.16), it is obvious that |S(ρ)| = N + 1, satisfying the first condition as well.

It remains to show that the vectors
[

1 ri
]

with ri defined in (D.16) are linearly
independent. Consider the matrix

[
e R

]
where e = [1 · · · 1]

′
is the (N +1)− dimensional

vector of 1′s and R is the matrix whose rows are vectors from S(ρ) such that

R =

r0

roN

...
ro1

Using (D.8), (D.12), and (D.16), one can write [1 rol] − [1 rol+1] = [0 eol
] for

l < N and [1 roN]− [1 r0] = [0 eoN]. Finally, note that

[1 r0] = [1 0] +
N∑

i=1

bρic [0 ei]

127

Using these arguments one can show that the matrix
[

e R
]

can be transformed into the
identity matrix of dimension N +1 by row operations. Therefore,

[
e R

]
is non-singular,

i.e., the third condition of Definition 1 is satisfied. Moreover, the inverse of
[

e R
]
, which

will be needed during the gradient estimation part of our approach in the next section, can
be evaluated to give:

[
e R

]−1 =

1 +
⌊
ρoN

⌋ ⌊
ρoN−1

⌋
− ⌊

ρoN

⌋ ⌊
ρoN−2

⌋
−

⌊
ρoN−1

⌋
... − ⌊

ρo1

⌋

−êN+1−ō1 + êN+2−ō1

...
−êN+1−ōN

+ êN+2−ōN

(D.18)
where êi is the (N + 1)−dimensional unit vector whose ith component is 1 and ō is the
N -dimensional ordering vector such that ōk ∈ {1, ..., N} satisfying the relation

oi = j ⇔ ōj = i

One can also verify that
[

e R
]−1 above is such that

[
e R

]−1 [
e R

]
= I.

We stress that the selection set S(ρ) is not unique; however, given a selection set S(ρ),
the αi values are unique for i = 0, ..., N . There are clearly different ways one can construct
S(ρ), including randomized methods. For instance, one can start out by randomly selecting
the first element of the selection set from C(ρ) and then proceed through a scheme similar
to the one used above.

The following is an algorithmic procedure for constructing S(ρ) as presented in Theorem
11:

• Initialize the index set I = {1, ..., N} and define a temporary vector v = ρ̃.

• While I 6= ∅:

1. r̃i =
∑

j∈I ej where i = arg min{vj , j ∈ I}
2. αi = vi

3. v ← v − αir̃
i

4. I ← I\{i}

• r̃0 = 0

• α0 = 1−∑N
i=1 αi

• S(ρ) = {ri|ri = r̃i + bρc for i = 0, ..., N}

Example: In order to clarify our notation and illustrate the specification of the sets
C(ρ), N (ρ) and S(ρ), we provide the following example, which we will use throughout our

128

analysis. Consider the allocation problem of K = 10 resources over N = 3 users, and let
ρ = [3.9, 3.9, 2.2]. The feasible set is

Ac =

{
ρ :

N∑

i=1

ρi = 10

}
(D.19)

Since bρc = [3, 3, 2], we have the unit cube

C(ρ) = {[3, 3, 2], [3, 3, 3], [3, 4, 2], [3, 4, 3], [4, 3, 2], [4, 3, 3], [4, 4, 2], [4, 4, 3]}
and the feasible neighbors of ρ are

N (ρ) = {[3, 4, 3], [4, 4, 2], [4, 3, 3]}
Let us now construct a selection set satisfying the conditions of Definition 1 using the
algorithm described above. First we initialize the index set I = {1, 2, 3} and the residual
vector v = ρ− bρc = [0.9, 0.9, 0.2]. Note that arg minj∈{1,2,3}{vj} = 3, therefore,

r̃3 =
∑

j∈{1,2,3}
ej = [1, 1, 1]

α3 = v3 = 0.2

Next, we update

v ← v − α3r̃
3 = [0.7, 0.7, 0]

I ← I\{3} = {1, 2}
Now, note that the first two components in the updated v are equal. We can select any one
of them for the next arg minj∈{1,2}{vj}. Thus, if we pick the first component we get

r̃1 =
∑

j∈{1,2}
ej = [1, 1, 0]

α1 = v1 = 0.7

Proceeding as before, we update

v ← v − α1r̃
1 = [0, 0, 0]

I ← I\{1} = {2}
and finish this step by setting

r̃2 =
∑

j∈{2}
ej = [0, 1, 0]

α2 = v2 = 0

Finally,

v ← v − α2r̃
2 = [0, 0, 0]

I ← I\{2} = {}

129

We may now construct the selection set from the vectors given by (D.16):

r1 = r̃1 + bρc = [1, 1, 0] + [3, 3, 2] = [4, 4, 2]
r2 = r̃2 + bρc = [0, 1, 0] + [3, 3, 2] = [3, 4, 2]
r3 = r̃3 + bρc = [1, 1, 1] + [3, 3, 2] = [4, 4, 3]
r0 = r̃0 + bρc = [0, 0, 0] + [3, 3, 2] = [3, 3, 2]

i.e.,
S(ρ) = {[3, 3, 2], [3, 4, 2], [4, 4, 2], [4, 4, 3]}

The example above illustrates the important difference between the selection set NN (ρ)
employed in [33] and the present construction: While all the elements of the set NN (ρ) are
feasible, the elements of the selection set S(ρ) constructed above may be infeasible. The
following lemma considers resource allocation problems with total capacity constraints as a
special case of discrete stochastic optimization and asserts that there is always exactly one
feasible point in S(ρ).

Lemma 12 For problems (D.1) with a feasible set Ad =
{

r :
∑N

i=1 ri = K, r ∈ ZN
+

}
, the

selection set S(ρ) constructed above includes one and only one feasible point. Moreover,
this point is the argument of minr∈N (ρ) ‖ρ− r‖.

Proof. Since ρ ∈ Ac, it follows from (D.7) that there exist {αi}M
i=1 that satisfy

ρj =
M∑

i=1

αir
i
j , ri ∈ N (ρ),

M∑

i=1

αi = 1, αi ≥ 0 for i = 1, ..., M

where M = |N (ρ)|. Therefore,

N∑

j=1

ρj =
N∑

j=1

M∑

i=1

αir
i
j =

M∑

i=1

αi

N∑

j=1

ri
j =

M∑

i=1

αiK = K

Then, we can write
N∑

j=1

⌊
ρj

⌋ ≤ K ≤
N∑

j=1

⌈
ρj

⌉

where the equality only holds for integer allocations. Since we agreed that ρ does not have
integer components,

N∑

j=1

⌊
ρj

⌋
< K <

N∑

j=1

⌈
ρj

⌉

Note that
N∑

j=1

(
⌈
ρj

⌉− ⌊
ρj

⌋
) = N (D.20)

130

and define the residual resource capacity m, with 0 < m < N , as

m = K −
N∑

j=1

⌊
ρj

⌋
(D.21)

Also note that from (D.12) and (D.16)

r0 = bρc+ r̃0 = bρc ∈ S(ρ)

and from (D.8)

ro1 = bρc+ r̃o1 = bρc+
N∑

k=1

eok
= dρe ∈ S(ρ) (D.22)

Now, observe that during the construction of S(ρ),

rol − rol+1 = eol

therefore,
N∑

i=1

rol
i −

N∑

i=1

r
ol+1

i =
N∑

i=1

(eol
)i = 1 (D.23)

Using (D.23),
N∑

i=1

ro1 −
N∑

i=1

roN+1−m = N −m

and it follows from (D.22) that

N∑

i=1

roN+1−m =
N∑

i=1

dρie −N + m = K

where we have used (D.20) and (D.21). Therefore, roN+1−m ∈ N (ρ) and the first part of
the proof is complete.

By construction of the selection set S(ρ), the elements rol satisfy the following

rol
i = dρie and rol

j =
⌊
ρj

⌋ ⇒ ρ̃i ≥ ρ̃j (D.24)

Therefore, we claim that roN+1−m is the solution of the minimization problem

min
r∈N (ρ)

‖ρ− r‖ =

√√√√
N∑

i=1

(ρi − ri)2

for ρ ∈ Ac. All elements r ∈ N (ρ) can be characterized in terms of a set Mr of indices
defined as

Mr = {i|ri = dρie}

131

where |Mr| = m for r ∈ N (ρ). One can then write an equivalent minimization problem as

min
r∈N (ρ)

N∑

i=1

(ρi − ri)2 = min
r∈N (ρ)

N∑

i=1
ri=bρic

(ρi − ri)2 +
N∑

i=1
ri=dρie

(ρi − ri)2

= min
r∈N (ρ)

 ∑

i∈I\Mr

ρ̃i
2 +

∑

i∈Mr

(1− ρ̃i)
2

For r, roN+1−m ∈ N (ρ), the sets Mr and MroN+1−m are formed by m elements from the
set {1, ..., N}. Starting at MroN+1−m , one can reach any Mr by a series of iterations,
each iteration involving the removal of one element from the set MroN+1−m\Mr, and the
addition of an element from the set Mr\MroN+1−m . If we remove i and add j while ρ̃i ≥ ρ̃j

we increase the objective value by

ρ̃2
i − ρ̃2

j + (1− ρ̃j)
2 − (1− ρ̃i)

2 = 2(ρ̃i − ρ̃j) ≥ 0

Since MroN+1−m has the arguments for the m highest ρ̃i, we cannot decrease the distance
by moving to another r ∈ N (ρ) therefore roN+1−m minimizes the distance from ρ.

Example (Cont.): For the resource allocation problem of K = 10 resources over N = 3
users, given ρ = [3.9, 3.9, 2.2], we found a selection set

S(ρ) = {[3, 3, 2], [3, 4, 2], [4, 4, 2], [4, 4, 3]}

Observe that [4, 4, 2] is the only element of S(ρ) above which is feasible, consistent with
Lemma 12. In addition, note that [4, 4, 2] is the obvious solution of the minimization
problem

min
r∈N (ρ)

‖ρ− r‖

where N (ρ) = {[3, 4, 3], [4, 4, 2], [4, 3, 3]}.

D.3 Construction of surrogate cost functions and their gra-
dients

Since our approach is based on iterating over the continuous state ρ ∈ Ac, yet drive the
iteration process with information involving Ld(r) obtained from a sample path under r,
we must establish a relationship between Ld(r) and L̄c(ρ). The choice of L̄c(ρ) is rather
flexible and may depend on information pertaining to a specific model and the nature of
the given cost Ld(r).

Before defining L̄c(ρ), we shall concentrate on surrogate cost functions Lc(ρ,S(ρ), ω)
(which clearly depend on a selection set and a sample path) that satisfy the following two
conditions:

132

(C1): Consistency : Lc(r,S(r), ω) = Ld(r, ω) for all r ∈ ZN
+ .

(C2): Piecewise Linearity: Lc(ρ,S(ρ), ω) is a linear function of ρ over conv(S(ρ)).

In the sequel, the ‘S(ρ)’ term will be dropped along with ‘ω’ for simplicity.

Consistency is an obvious requirement for Lc(ρ). Piecewise linearity is chosen for con-
venience, since manipulating linear functions over conv(S(ρ)) simplifies analysis, as will
become clear in what follows.

Given some state ρ ∈ Ac and cost functions Ld(rj) for all rj ∈ S(ρ), it follows from
(C2) and (D.17) that we can write

ρ =
N∑

j=0

αjr
j ⇒ Lc(ρ) =

N∑

j=0

αjLc(rj)

with
∑N

j=0 αj = 1, αj ≥ 0 for all j = 0, .., N . Moreover, by (C1), we have

Lc(ρ) =
N∑

j=0

αjLd(rj) (D.25)

that is, Lc(ρ) is a convex combination of the costs of discrete neighbors in S(ρ). Note
that although S(ρ) is not unique, given S(ρ), the values of αi for i = 0, ..., N are unique;
therefore, Lc(ρ) is well defined.

We now define a surrogate cost function L̄c(ρ) and the corresponding selection set S∗(ρ)
as

L̄c(ρ) = min
S(ρ)

Lc(ρ) (D.26)

and
S∗(ρ) = arg min

S(ρ)
Lc(ρ) (D.27)

where the minimization is over all possible selection sets for the point ρ. The function L̄c(ρ)
satisfies the consistency condition (C1), but it may not be a continuous function due to
changes in the selection set S∗(·) for neighboring points.

Next, if we are to successfully use the iterative scheme described by (D.4)-(D.5), we need
information of the form Hn(ρn, rn, ωn) following the nth step of the on-line optimization
process. Typically, this information is contained in an estimate of the gradient. Our next
objective, therefore, is to seek the selection-set-dependent sample gradient∇Lc(ρ) expressed
in terms of directly observable sample path data.

D.3.1 Gradient evaluation

The gradient information necessary to drive the stochastic approximation part of the surro-
gate method is evaluated depending on the form of the cost function. Gradient estimation
for separable cost functions is significantly simpler and is discussed in the next section.

133

Since Lc(ρ) is a linear function on the convex hull defined by S(ρ), one can write

Lc(ρ) =
N∑

i=1

βiρi + β0 (D.28)

where

βi =
∂Lc(ρ)

∂ρi

, i = 1, ..., N

and β0 ∈ R is a constant. Note that the βi values depend on the selection set S(ρ), which,
as already pointed out, may not be unique.

For any rj ∈ S(ρ), one can use (D.28) and (C1) to write

Ld(rj) =
N∑

i=1

βir
j
i + β0

Note that the values Ld(rj) are either observable or can be evaluated using Concurrent
Estimation or Perturbation Analysis techniques (see [41], [20]) despite the fact that rj ∈
S(ρ) may be infeasible, i.e., having infeasible points in the selection set does not affect our
ability to obtain gradients. One can now rewrite the equation above as

[
e R

]
β = L

where e is an (N+1)−dimensional column vector with all entries equal to 1, β = [β0, ..., βN]′,
R is the matrix whose rows are rj ∈ S(ρ), and L is the column vector of costs for these dis-
crete states. Since we have constructed S(ρ) so that

[
e R

]
is non-singular, the gradient

given by ∇Lc(ρ) = [β1, ..., βN]′, can be obtained from the last equation as

∇Lc(ρ) =
[

0 I
] [

e R
]−1

L (D.29)

where I is the identity matrix of dimension N and 0 is the N -dimensional vector of zeros.
Substituting from equation (D.18), the gradient can be written as

∇Lc(ρ) =

−êN+1−ō1 + êN+2−ō1

...
−êN+1−ōN

+ êN+2−ōN

Ld(r0)
Ld(roN)

...
Ld(ro1)

 (D.30)

Therefore,
∇jLc(ρ) = Ld(rj)− Ld(rk) (D.31)

where k satisfies ōj + 1 = ōk, i.e., rj − rk = ej . As pointed out in the Introduction, this
is a significant simplification over the gradient evaluation used in our earlier work [33].
Moreover, this analysis allows us to combine the algorithm for determining the selection set
given in the previous section with the gradient estimation component of our approach to
obtain the following:

134

• Initialize the index set I = {1, ..., N}
• ri = dρe where i = arg minj∈I ρ̃j

• OC = Ld(ri)

• oi = i

• I = I\{i}
• While I 6= ∅:

1. rk = roi − eoi where k = arg minj∈I ρ̃j

2. ∇oiLc(ρ) = OC − Ld(rk)

3. OC = Ld(rk)

4. oi = k

5. I = I\{k}

• r0 = bρc
• ∇oiLc(ρ) = OC − Ld(r0)

Example (Cont.): For the example we have been using throughout the paper, consider
the cost function

J(r) = ‖r − [2, 5, 3]‖2

Let ρn = [3.9, 3.9, 2.2], for which we found S(ρ) = {[3, 3, 2], [3, 4, 2], [4, 4, 2], [4, 4, 3]} with
r1 = [4, 4, 2], r2 = [3, 4, 2], r3 = [4, 4, 3], and r0 = [3, 3, 2]. The gradient at this point can,
therefore, be evaluated using (D.31) to give

∇Lc(ρn) =

Jd([4, 4, 2])− Jd([3, 4, 2])
Jd([3, 4, 2])− Jd([3, 3, 2])
Jd([4, 4, 3])− Jd([4, 4, 2])

 =

3
−3
−1

Using ηn = 0.5 in (D.4):

ρn+1 = πn+1[ρn − ηn∇Lc(ρn)]
= πn+1[[2.4, 5.4, 2.7]]
= [2.2, 5.2, 2.6]

where we have used the projection π to map the point [2.4, 5.4, 2.7] into a feasible point
[2.2, 5.2, 2.6] ∈ Ac. For this example, π can be defined as follows:

π[ρ̄] = arg minPN
i=1 ρi=10

‖ρ− ρ̄‖

135

D.3.2 Projection Mapping

The projection mapping π is a crucial element of our method and has a very significant
effect on the convergence. In this section, we discuss a projection mapping which can be
used for resource allocation problems with feasible sets

Ad =

{
r :

N∑

i=1

ri = K, r ∈ ZN
+

}

Consider the optimization problem

min
ρ

N∑

i=1

(ρi − ρ̄i)
2

subject to

ρi ≥ 0
N∑

i=1

ρi = K

The solution to this optimization problem, which we will denote by π(ρ̄), is the closest point
in the feasible set Ac to the point ρ̄. Note that a π projection to a closed convex set defined
in this manner is continuous and nonexpansive, therefore it guarantees convergence (see
[33]).

Let us consider the relaxed problem

min
ρi≥0

N∑

i=1

[
(ρi − ρ̄i)

2 − λρi

]
+ λK

The necessary optimality conditions are

[2(ρi − ρ̄i)− λ] = 0 for ρi > 0
[2(ρi − ρ̄i)− λ] > 0 for ρi = 0

N∑

i=1

ρi = K

or equivalently

ρi = ρ̄i +
λ

2
for ρi > 0

ρi > ρ̄i +
λ

2
for ρi = 0

N∑

i=1

ρi = K

136

i.e.,

ρi = max(0, ρ̄i +
λ

2
)

N∑

i=1

ρi = K

These equations suggest the following algorithm for the π projection:

Projection Algorithm:

• Initialize λ0 = 2
N (K −∑N

i=1 max(0, ρ̄i))

• If some stopping condition is not satisfied:

1. For i = 1, 2, ...N, ρi = max(0, ρ̄i + λ
2)

2. λ ← λ + 2
N (K −∑N

i=1 ρi)

• Set π[ρ̄] = ρ.

A common stopping condition we have used in our work (see also Section D.6) is∣∣∣K −∑N
i=1 ρi

∣∣∣ ≤ ε, for some small ε > 0. Then, the vector ρ is rescaled

ρ ← K∑N
i=1 ρi

ρ

to satisfy the capacity constraint. The error introduced while rescaling is small and it is a
monotonically increasing function of ε. Note that there is a trade-off between the number
of iterations needed and the size of the resulting error term determined by the selection of
ε.

D.3.3 Separable cost functions

Suppose that the cost function, Ld(·), is separable in the sense that it is a sum of component
costs each dependent on its local state only, i.e., let

Ld(r) =
N∑

i=1

Ld,i(ri) (D.32)

137

In this case, our approach is significantly simplified. In particular, from (D.31) and (D.32),
we can write

∇jLc(ρ) = Ld(rj)− Ld(rk)

=
N∑

i=1

Ld,i(r
j
i)−

N∑

i=1

Ld,i(rk
i)

=
N∑

i=1

[Ld,i(r
j
i)− Ld,i(rk

i)]

= Ld,j(r
j
j)− Ld,j(r

j
j − 1)

where k satisfies ōj + 1 = ōk, i.e., rj − rk = ej . Note that rj
j =

⌈
ρj

⌉
and rj

j − 1 =
⌊
ρj

⌋
;

therefore,

∇jLc(ρ) = Ld,j(
⌈
ρj

⌉
)− Ld,j(

⌊
ρj

⌋
) (D.33)

This result indicates that for separable cost functions estimating sensitivities does not re-
quire the determination of a selection set; we can instead simply pick a feasible neighbor
(preferably the closest feasible neighbor to ρ) and apply Perturbation Analysis (PA) tech-
niques to determine the gradient components through (D.33). There are a number of PA
techniques developed precisely for evaluating the effect of decreasing and increasing the
number of resources allocated to user i; for example, estimating the sensitivity of packet
loss in a radio network with respect to adding/removing a transmission slot available to the
ith user [19], [82]. In [34] a PA technique is used together with our methodology to solve
a call admission problem (with a separable cost function) over a communication network
where there are capacity constraints on each node, while there is no total capacity constraint
for the network.

D.4 Recovery of optimal discrete states

Our ultimate goal remains the solution of (D.1), that is the determination of r∗ ∈ Ad that
solves this optimization problem. Our approach is to solve (D.2) by iterating on ρ ∈ Ac and,
at each step, transforming ρ through some f ∈ Fρ. The connection between ρ and r = f (ρ)
for each step is therefore crucial, as is the relationship between ρ∗ and f(ρ∗) when and if
this iterative process comes to an end identifying a solution ρ∗ to the surrogate problem
(D.2).

The following theorem identifies a key property of the selection set S∗(ρ∗) of an optimal
surrogate state ρ∗.

Theorem 13 Let ρ∗ minimize L̄c(ρ) over Ac. If r∗ = arg minr∈S∗(ρ∗) Ld(r) ∈ N (ρ∗), i.e.,
the minimal cost element r∗ of the selection set S∗(ρ∗) corresponding to L̄c(ρ∗) is feasible,
then r∗ minimizes Ld(r) over Ad and satisfies Ld(r∗) = L̄c(ρ∗).

138

Proof. By (D.25), the optimal surrogate state ρ∗ = arg minρ∈Ac L̄c(ρ) satisfies

L̄c(ρ∗) =
N∑

j=0

αjLd(rj)

where
∑N

j=0 αj = 1, rj ∈ S∗(ρ∗), αj ≥ 0 for j = 0, .., N . Then,

L̄c(ρ∗) =
N∑

j=0

αjLd(rj) ≥
N∑

j=0

αjLd(r∗) = Ld(r∗) (D.34)

regardless of the feasibility of r∗.

Next, note that Ad ⊂ Ac and L̄c(r) = Ld(r) for any r ∈ Ad. Therefore, if r∗ ∈ N (ρ∗),
then

Ld(r∗) = L̄c(r∗) ≥ L̄c(ρ∗) (D.35)

In view of (D.34) and (D.35), we then get

Ld(r∗) ≤ L̄c(ρ∗) ≤ Ld(r∗)

It follows that
Ld(r∗) = L̄c(ρ∗)

that is, r∗ is optimal over Ad. Finally, since r∗ is one of the discrete feasible neighboring
states of ρ∗, i.e. r∗ ∈ N (ρ∗), we have r∗ = f(ρ∗) for some f ∈ Fρ∗ .

Corollary 14 For unconstrained problems, let ρ∗ minimize L̄c(ρ). Then,

r∗ = arg min
r∈S∗(ρ∗)

Ld(r)

minimizes Ld(r) and satisfies Ld(r∗) = L̄c(ρ∗).

Proof. If problem (D.1) is unconstrained, then trivially r∗ = arg minr∈S∗(ρ∗) Ld(r) ∈ N (ρ∗)
and the result follows.

An interesting example of an unconstrained problem is that of lot sizing in manufacturing
systems (see [22]) where the sizes of lots of different parts being produced may take any
(non-negative) integer value. Clearly, Corollary 14 also holds for problems where the optimal
point is in the interior of the feasible set where the constraints are not active, i.e., N (ρ∗) =
C(ρ∗).

If there are active constraints around the optimal point ρ∗, i.e., N (ρ∗) 6= C(ρ∗), and there
are infeasible points in the selection set S(ρ∗), then, if one of these infeasible points has
the minimal cost, the recovery of the optimal as a feasible neighbor of ρ∗ becomes difficult
to guarantee theoretically, even though empirical evidence shows that this is indeed the
case. This is the price to pay for the generalization of the surrogate problem method we
have presented here through the introduction of a selection set that allows the inclusion
of infeasible points. However, if the cost function Ld(r) is “smooth” in some sense, the
minimal cost element of N (ρ∗) will in general be either an optimal or a near-optimal point
as stated in the next lemma.

139

Lemma 15 If the cost function Ld(r) satisfies
∣∣Ld(r1)− Ld(r2)

∣∣ ≤ cω

∥∥r1 − r2
∥∥ , cω < ∞ (D.36)

then all r ∈ N (ρ∗) satisfy
Ld(r) ≤ L̄c(ρ∗) + cω

√
N (D.37)

Proof. Note that S∗(ρ∗) ⊂ C(ρ∗) and N (ρ∗) ⊂ C(ρ∗). It is easy to show that for
r1, r2 ∈ C(ρ∗) ∥∥r1 − r2

∥∥ ≤
√

N

By (D.34), there exists r∗ ∈ S∗(ρ∗) that satisfies L̄c(ρ∗) ≥ Ld(r∗) regardless of its feasibility.
For r ∈ N (ρ∗), we can write L̄c(ρ∗) ≤ Ld(r), therefore

|Ld(r)− Ld(r∗)| = Ld(r)− Ld(r∗) ≥ Ld(r)− L̄c(ρ∗) (D.38)

By assumption (D.36),

|Ld(r)− Ld(r∗)| ≤ cω ‖r − r∗‖ ≤ cω

√
N (D.39)

Hence, from (D.38) and (D.39),

Ld(r) ≤ L̄c(ρ∗) + cω

√
N

In practice, for many cost metrics such as throughput or mean system time in queueing
models, it is common to have the costs in the neighborhood of an optimal point be relatively
close, in which case the value of cω is small and (D.37) is a useful bound.

D.5 Optimization Algorithm

Summarizing the results of the previous sections and combining them with the basic scheme
described by (D.4)-(D.5), we obtain the following optimization algorithm for the solution
of the basic problem in (D.1):

• Initialize ρ0 = r0 and perturb ρ0 to have all components non-integer.

• For any iteration n = 0, 1, . . .:

1. Determine S(ρn) [using the construction of Theorem 11; recall that this set is
generally not unique].

2. Select fn ∈ Fρn
such that rn = arg minr∈N (ρn) ‖r − ρn‖ = fn(ρn) ∈ N (ρn).

3. Operate at rn to collect Ld(ri) for all ri ∈ S(ρn) [using Concurrent Estimation or
some form of Perturbation Analysis; or, if feasible, through off-line simulation].

4. Evaluate ∇Lc(ρn) [using (D.31)].

140

5. Update the continuous state: ρn+1 = πn+1[ρn − ηn∇Lc(ρn)].

6. If some stopping condition is not satisfied, repeat steps for n + 1. Else, set
ρ∗ = ρn+1.

• Obtain the optimal (or the near optimal) state as one of the neighboring feasible states
in the set N (ρ∗).

Note that for separable cost functions, steps 1-6 can be replaced by

1. Select fn such that rn = arg minr∈N (ρn) ‖r − ρn‖ = fn(ρn) ∈ N (ρn).

2. Operate at rn to evaluate ∇Lc(ρn) using Perturbation Analysis and (D.33).

3. Update the continuous state: ρn+1 = πn+1[ρn − ηn∇Lc(ρn)].

4. If some stopping condition is not satisfied, repeat steps for n+1. Else, set ρ∗ = ρn+1.

The surrogate part of this algorithm is a stochastic approximation scheme with projec-
tion whose convergence was analyzed in [33] and references therein.

Note that ideally we would like to have ∇Jc(ρn) be the cost sensitivity driving the
algorithm. Since this information is not always available in a stochastic environment and
since Jc(ρn) = E[L̄c(ρn, ω)], the stochastic approximation algorithm uses ∇L̄c(ρn, ω) as an
estimate and under some standard assumptions on the estimation error εn where

∇Jc(ρn) = ∇L̄c(ρn, ω) + εn

the convergence is guaranteed. In order to get ∇L̄c(ρn, ω), however, one needs to consider
all possible selection sets. In this algorithm we utilize only one of those selection sets
and approximate ∇L̄c(ρn, ω) with ∇Lc(ρn, S(ρn), ω). This approximation introduces yet
another error term ε̄n where

∇L̄c(ρn, ω) = ∇Lc(ρn, S(ρn), ω) + ε̄n

Note that this error term ε̄n exists regardless of stochasticity, unless the cost function Ld(.)
is separable (all selection sets will yield the same sensitivity for separable cost functions).
We can combine error terms to define εn = ε̄n + εn and write

∇Jc(ρn) = ∇Lc(ρn, S(ρn), ω) + εn

If the augmented error term εn satisfies the standard assumptions, then convergence of the
algorithm to the optimal follows in the same way as presented in [33].

141

D.6 Numerical Examples and Applications

We first illustrate our approach by means of a simple deterministic example, followed by a
more challenging stochastic optimization application for a classical problem in manufactur-
ing systems.

Example 1: Consider an allocation problem of K = 20 resources over N = 4 users so
as to minimize the convex cost function Jd(r) defined as

Jd(r) = ‖r − [4, 5, 3, 8]‖2

Suppose the initial state is ρ0 = [1.8, 9.1, 6.2, 2.9]. Note that the set of feasible neigh-
boring states N (ρ0) is

N (ρ0) = {[2, 10, 6, 2], [2, 9, 7, 2], [2, 9, 6, 3], [1, 10, 7, 2], [1, 10, 6, 3], [1, 9, 7, 3]}

Following the steps shown in the algorithm of Section D.5, we have:

1. Determine the selection set S(ρ0)

S(ρ0) = {[1, 9, 6, 2], [1, 9, 6, 3], [2, 9, 6, 3], [2, 9, 7, 3], [2, 10, 7, 3]}

2. Select r0 = f0(ρ0) ∈ N (ρ0):
r0 = [2, 9, 6, 3]

3. Evaluate cost functions for states in S(ρ0):

Jd([1, 9, 6, 2]) = 70 Jd([1, 9, 6, 3]) = 59 Jd([2, 9, 6, 3]) = 54
Jd([2, 9, 7, 3]) = 61 Jd([2, 10, 7, 3]) = 70

4. Evaluate the gradient of the cost at ρ0

(∇Jc(ρ0))1 = Jd([2, 9, 6, 3])− Jd([1, 9, 6, 3]) = −5
(∇Jc(ρ0))2 = Jd([2, 10, 7, 3])− Jd([2, 9, 7, 3]) = 9
(∇Jc(ρ0))3 = Jd([2, 9, 7, 3])− Jd([2, 9, 6, 3]) = 7
(∇Jc(ρ0))4 = Jd([1, 9, 6, 3])− Jd([1, 9, 6, 2]) = −11

Therefore,

∇Jc(ρ0) =

−5
9
7
−11

5. Update the surrogate state:

ρ1 = π1[ρ0 − η0∇Jc(ρ0)]

142

6. If the stopping condition is not satisfied, go to step 1 and repeat with ρn+1 replacing
ρn for n = 0, 1,

Using a step size sequence ηn = 0.5/(n + 1), the following table shows the evolution of
the algorithm for the first few steps. Note that the optimal allocation [4, 5, 3, 8] is reached
after a single step.

STEP ρ r Jc(ρ) J(r)
0 [1.800, 9.100, 6.200, 2.900] [2, 9, 6, 3] 56.84 54
1 [4.300, 4.600, 2.700, 8.400] [4, 5, 3, 8] 0.50 0
2 [4.050, 4.850, 2.950, 8.150] [4, 5, 3, 8] 0.05 0

Table D.1: Optimal Resource Allocation

Example 2: Consider a manufacturing system formed by five stages in series. The
arrival process to the system is Poisson with rate λ = 1.0 and the service processes are all
exponential with rates µ1 = 2.0, µ2 = 1.5, µ3 = 1.3, µ4 = 1.2, and µ5 = 1.1. Note that
Poisson arrival process and exponential service times are not required by the algorithm.
They are chosen for simplicity of the simulations.

We would like to allocate kanban (tickets) to stages 2− 5, to minimize a cost function
that has two components

J(r) = J1(r) + J2(r)

where r ∈ Z4
+ is the vector of kanban allocated to stages 2−5. The first component J1(r) is

the average system time for jobs and the second component J2(r) is a cost on the number
of kanban allocated defined as

J2(r) = c

∣∣∣∣∣K −
4∑

i=1

ri

∣∣∣∣∣

For large enough c, the second component J2(r) dominates the cost; therefore, a capacity
constraint of the form

4∑

i=1

ri = K

is enforced. The problem, then, can be written as

minP4
i=1 ri=K

J1(r)

which was considered in [67] with K = 13. The surrogate method for the same problem
performs as follows:

At each iteration we observe 100 departures and use the decreasing step size ηn = 140
n .

The optimal allocation is observed as [1, 3, 4, 5] which matches the result from [67]. It is
worthwhile noting that this optimal point is identified within 13 iterations, illustrating the
convergence speed of this method.

143

Iterations r J(r)
1 [3, 3, 3, 4] 0.798133
2 [1, 2, 2, 8] 0.781896
3 [1, 5, 4, 8] 0.767171
4 [1, 4, 6, 7] 0.746568
5 [1, 4, 6, 7] 0.761161
6 [1, 4, 6, 6] 0.709394
7 [1, 3, 5, 6] 0.827928
8 [1, 3, 5, 6] 0.788815
9 [1, 3, 5, 5] 0.730709
10 [1, 3, 5, 6] 0.742748
11 [1, 3, 5, 5] 0.791522
12 [1, 2, 5, 5] 0.865436
13 [1, 3, 4, 5] 0.795680
14 [1, 3, 4, 5] 0.738700
15 [1, 3, 4, 5] 0.857133
16 [1, 3, 4, 5] 0.679464
17 [1, 3, 4, 5] 0.875472
18 [1, 3, 4, 5] 0.840447

Table D.2: Optimal Kanban Allocation

D.6.1 Multicommodity Resource Allocation Problems

An interesting class of discrete optimization problems arises when Q different types of
resources must be allocated to N users. The corresponding optimization problem we would
like to solve is

min
r∈Ad

J(r)

where r = [r1,1, . . . , r1,Q, · · · , rN,1, . . . , rN,Q] is the allocation vector and ri,q is the number
of resources of type q allocated to user i. A typical feasible set Ad is defined by the capacity
constraints

N∑

i=1

ri,q ≤ Kq, q = 1, . . . , Q

and possibly additional constraints such as βi ≤ ri,q ≤ γi for i = 1, . . . , N . Aside from
the fact that such problems are of higher dimensionality because of the Q different resource
types that must be allocated to each user, it is also common that they exhibit multiple local
minima. Examples of such problems are encountered in operations planning that involve
N tasks to be simultaneously performed, each task i requiring a “package” of resources
(ri,1, . . . , ri,Q) in order to be carried out. The natural trade-off involved is between carrying
out fewer tasks each with a high probability of success (because each task is provided
adequate resources) and carrying out more tasks each with lower probability of success.

The “surrogate problem” method provides an attractive means of dealing with these

144

problems with local minima because of its convergence speed. Our approach for solving these
problems is to randomize over the initial states r0 (equivalently, ρ0) and seek a (possibly
local) minimum corresponding to this initial point. The process is repeated for different,
randomly selected, initial states so as to seek better solutions. For deterministic problems,
the best allocation seen so far is reported as the optimal. For stochastic problems, we adopt
the stochastic comparison approach in [36]. The algorithm is run from a randomly selected
initial point and the cost of the corresponding final point is compared with the cost of the
“best point seen so far”. The stochastic comparison test in [36] is applied to determine
the “best point seen so far” for the next run. Therefore, the surrogate problem method
can be seen as a complementary component for random search algorithms that exploits the
problem structure to yield better generating probabilities (as discussed in [36]), which will
eliminate (or decrease) the visits to poor allocations enabling them to be applied on-line.

In what follows we consider a problem with N = 16, Q = 2, and K1 = 20, K2 = 8. We
then seek a 32−dimensional vector r = [r1,1, r1,2, · · · , r16,1, . . . , r16,2] to maximize a reward
function of the form

J(r) =
16∑

i=1

Ji(r) (D.40)

subject to
N∑

i=1

ri,1 ≤ 20,

N∑

i=1

ri,2 ≤ 8

The reward functions Ji(r) we will use in this problem are defined as

Ji = ViP
0
i (r)− C1ri,1P

1
i (r)− C2ri,2P

2
i (r) (D.41)

In (D.41), Vi represents the “value” of successfully completing the ith task and P 0
i (r) is

the probability of successful completion of the ith task under an allocation r. In addition,
Cq is the cost of a resource of type q, where q = 1, 2, and P q

i (r) is the probability that
a resource of type q is completely consumed or lost during the execution of the ith task
under an allocation r. A representative example of a reward function for a single task with
Vi = 150 is shown in Fig. D.1.

The cost values of resource types are C1 = 20 and C2 = 40, and the values for tasks we
will use in this problem range between 50 and 150.

The surrogate method is executed from random initial points and the results for some
runs are shown in Fig. D.2. Note that due to local maxima, some runs yield suboptimal
results. However, in all cases convergence is attained extremely fast, enabling us to repeat
the optimization process multiple times with different initial points in search of the global
maximum. Although it is infeasible to identify the actual global maximum, we have com-
pared our approach to a few heuristic techniques and pure random search methods and
found the “surrogate problem” method to outperform them.

145

0
2

4
6

8
10

0

2

4

6

8

10
−200

−150

−100

−50

0

50

100

150

Resource Type 1Resource Type 2

R
ew

ar
d

Figure D.1: A typical reward function Ji(ri,1, ri,2)

D.7 Conclusions

In this paper we have generalized the methodology presented in [33] for solving stochastic
discrete optimization problems. In particular, we have introduced the concept of a “selection
set” associated with every surrogate state ρ ∈ Ac and modified the definition of the surrogate
cost function L̄c(ρ) so that the method can be applied to arbitrary constraint sets and is
computationally more efficient.

As in [33], the discrete optimization problem was transformed into a “surrogate” con-
tinuous optimization problem which was solved using gradient-based techniques. It was
shown that, under certain conditions, the solution of the original problem is recovered from
the optimal surrogate state. A key contribution of the methodology is its on-line control
nature, based on the actual data from the underlying system. One can therefore see that
this approach is intended to combine the advantages of a stochastic approximation type of
algorithm with the ability to obtain sensitivity estimates with respect to discrete decision
variables. This combination leads to very fast convergence to the optimal point.

Using this approach, we have also tackled a class of particularly hard multicommodity
discrete optimization problems, where multiple local optima typically exist. Exploiting the
convergence speed of the surrogate method, we presented a procedure where the algorithm
is started from multiple random initial states in an effort to determine the global optimum.

146

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19

Iterations

T
o

ta
l R

ew
ar

d

Figure D.2: Algorithm convergence under different initial points

147

Bibliography

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, Wiley, New
York, NY, 1989.

[2] S. Agrawal, Metamodeling, MIT Press, 1985.

[3] D. Anderson, T. Frivold, and A. Valdes, Next-generation intrusion detection
expert system (NIDES): A summary. Computer Science Laboratory, SRI-CSL-95-07,
May 1995, 1995.

[4] D. Anick, D. Mitra, and M. Sondhi, Stochastic theory of a data-handling system
with multiple sources, The Bell System Technical Journal, 61 (1982), pp. 1871–1894.

[5] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, A framework for
Internet traffic engineering (Internet Draft), tech. report, IETF, May 2000.

[6] C. M. Barnhart, J. E. Wieselthier, and A. Ephremides, Admission control
policies for multihop wireless networks, Wireless Networks, 1 (1995), pp. 373–387.

[7] E. B. Baum and D. Haussler, What size net gives valid generalization, Neural
Computation, 1 (1989), pp. 151–160.

[8] H. Bruneel and I. Wuyts, Analysis of discrete-time multiserver queueing models
with constant service times, Operations Research Letters 15, (1994), pp. 231–236.

[9] J. Cao, W. Cleveland, D. Lin, and D. Sun, The effect of statistical multiplexing
on Internet packet traffic: theory and empirical study, tech. report, Bell Labs, 2001.

[10] G. Carpenter and S. Grossberg, ART 2: Self-organization of stable category
recognition codes for analog input patterns, Applied Optics, (1987).

[11] C. Cassandras, Discrete Event Systems, Modeling and Performance Analysis, Irwin,
1993.

[12] C. Cassandras and W.-B. Gong, Enabling technologies for real-time simulation,
tech. report, Univ. of Mass., Dec. 1996.

[13] , Real-time simulation technologies for complex systems, tech. report, Boston Uni-
versity, Nov. 1999.

148

[14] C. Cassandras, W.-B. Gong, C. Liu, C. Panayiotou, and D. Pepyne,
Simulation-driven metamodeling of complex systems using neural networks, in Pro-
ceedings of 19th SPIE Conference, Apr. 1998.

[15] C. Cassandras, G. Sun, and C. Panayiotou, Stochastic fluid models for control
and optimization of systems with quality of service requirements, in Proceedings of the
2001 IEEE Conference on Decision and Control, 2001, pp. 1917–1922.

[16] C. Cassandras, G. Sun, C. Panayiotou, and Y. Wardi, Perturbation analysis
and control of two-class stochastic fluid models for communication networks, IEEE
Transactions on Automatic Control, (2002). Submitted.

[17] C. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. Panayiotou, On-
line gradient estimation for control and optimization of stochastic fluid models, IEEE
Transactions on Automatic Control, (2001). To Appear.

[18] C. G. Cassandras, L. Dai, and C. G. Panayiotou, Ordinal optimization for
deterministic and stochastic resource allocation., IEEE Trans. Automatic Control, 43
(1998), pp. 881–900.

[19] C. G. Cassandras and V. Julka, Scheduling policies using marked/phantom slot
algorithms, Queueing Systems: Theory and Applications, 20 (1995), pp. 207–254.

[20] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
Kluwer Academic Publishers, 1999.

[21] C. G. Cassandras and C. G. Panayiotou, Concurrent sample path analysis of
discrete event systems, Journal of Discrete Event Dynamic Systems: Theory and Ap-
plications, 9 (1999), pp. 171–195.

[22] C. G. Cassandras and R. Yu, A ‘surrogate problem’ approach for lot size optimiza-
tion in manufacturing systems, Proc. of 2000 American Control Conference, (2000),
pp. 3279–3283.

[23] C.Cassandras, W.-B.Gong, C.Liu, C.Panayiotou, and D.Pepyne, Simulation-
driven metamodeling of complex systems using neural networks, in Proceedings of 19th
SPIE Conference, APR 1998.

[24] R. C. H. Cheng, Regression metamodeling in simulation using Bayesian methods, in
Proceedings of Winter Simulation Conference, Dec 1999, pp. 330–335.

[25] R. Cruz, A calculus for network delay, Part 1: Network elements in isolation, IEEE
Transactions on Information Theory, (1991).

[26] S. Fahlman and C. Lebiere, The cascade-correlation learning architecture, tech.
report, Carnegie Mellon Univ. CMU-CS-90-100, Feb. 1990.

[27] L. Fausett, Fundamentals of Neural Networks: Architecture, Algorithms and Appli-
cations, Prentice Hall, 1994.

149

[28] A. Feldmann, A. Gilbeert, and W. Williger, Data networks as cascades:
investigating the multifractal nature of Internet WAN traffic, in Proc. of the
ACM/Sigcomm’98, September 1998, pp. 42–55.

[29] A. Frantz, F.K.and Ellor, Model abstraction techniques, tech. report, Computer
Sciences Corp. CDRL A003, Jan. 1995.

[30] L. Friedman, The Simulation Metamodel, Kluwer, 1996.

[31] P. Glasserman, Gradient Estimation via Perturbation Analysis, Kluwer Academic
Pub., 1991.

[32] K. Gokbayrak and C. G. Cassandras, A generalized ‘surrogate problem’ method-
ology for on-line stochastic discrete optimization, J. of Optimization Theory and Ap-
plications. Submitted 2001.

[33] K. Gokbayrak and C. G. Cassandras, Stochastic discrete optimization using a
surrogate problem methodology, in Proceedings of 20th SPIE Conference, Orlando, Apr.
1999.

[34] K. Gokbayrak and C. G. Cassandras, Adaptive call admission control in circuit
switched networks, IEEE Transactions on Automatic Control, (2000). Submitted.

[35] , An on-line ‘surrogate problem’ methodology for stochastic discrete resource allo-
cation problems, J. of Optimization Theory and Applications, 108 (2001), pp. 349–376.

[36] W. B. Gong, Y. C. Ho, and W. Zhai, Stochastic comparison algorithm for discrete
optimization with estimation, Proc. of 31st IEEE Conf. on Decision and Control, (1992),
pp. 795–800.

[37] B. Griggs, G. Parnell, and L. Lehmkuhl, An air mission planning algorithm us-
ing decision analysis and mixed integer programming, Operations Research, 45 (1997).

[38] Y. Guo, On Fluid Modeling of Networks and Queues, PhD thesis, University of Mas-
sachusetts Amherst, Amherst MA, September 2000.

[39] Y. Guo, X. Yin, and W. Gong, ART2 neural network clustering for hierarchical
simulation, in Proceedings of 19th SPIE Conference, Orlando, Apr. 1998.

[40] H. Hafner, Lot-sizing and throughput times in a job shop, International Journal of
Production Economics, 23 (1991), pp. 111–116.

[41] Y. Ho and X. Cao, Perturbation Analysis of Discrete Event Dynamic Systems,
Kluwer Academic Publishers, Boston, Massachusetts, 1991.

[42] Y. C. Ho, R. S. Sreenivas, and P. Vakili, Ordinal optimization in DEDS, J. of
Discrete Event Dynamic Systems: Theory and Applications, 2 (1992), pp. 61–88.

[43] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, MI, 1975.

150

[44] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches,
MIT Press, Cambridge, MA, 1988.

[45] G. Jablunovsky, C. Dorman, and P. Yaworsky, A neural network sub-model as
an abstraction tool: Relating network performance to combat outcome, in Proceedings
of SPIE, Orlando, Florida, Apr 2000.

[46] G. Kaplan, Simulating networks, IEEE Spectrum, (2001), pp. 74–75.

[47] G. Kesidis, A. Singh, D. Cheung, and W. Kwok, Feasibility of fluid-driven simu-
lation for ATM network, in Proceedings of IEEE GLOBECOM, vol. 3, 1996, pp. 2013–
2017.

[48] H. Kobayashi and Q. Ren, A mathematical theory for transient analysis of commu-
nications networks, IEICE Transactions on Communications, E75-B (1992), pp. 1266–
1276.

[49] K. Kumaran and D. Mitra, Performance and fluid simulations of a novel shared
buffer management system, in Proceedings of IEEE INFOCOM, Mar 1998.

[50] H. Kushner and D. Clark, Stochastic Approximation for Constrained and Uncon-
strained Systems, Springer-Verlag, Berlin, Germany, 1978.

[51] T. Lane, Hidden Markov Models for human/computer interface modeling, in IJCAI-99
Workshop on Learning About Users, 1999, pp. 35–44.

[52] T. Lane and C. E. Brodley, Temporal sequence learning and data reduction for
anomaly detection, ACM Transactions on Information and System Security, 2 (1999),
pp. 295–331.

[53] C. E. Lau, Neural Networks: Theoretical Foundations and Analysis, IEEE Press, 1991.

[54] S. Lee and T. Tang, Transport coefficients for a silicon hydrodynamic model extracted
from inhomogeneous Monte Carlo calculations, Solid-State Electronics, 35 (1992),
pp. 561–569.

[55] B. Liu, D. Figueiredo, Y. Guo, J. Kurose, and D. Towsley, A study of networks
simulation efficiency: fluid simulation vs. packet-level simulation, in Proceedings of
IEEE Infocom 2001, vol. 3, Alaska, April 2001, pp. 1244–1253.

[56] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong, Fluid simulation of large
scale networks: Issues and tradeoffs, in Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada,
Jun 1999.

[57] Y. Liu and W. Gong, Perturbation analysis for stochastic fluid queueing systems, in
Proc. 38th IEEE Conf. Dec. and Ctrl, 1999, pp. 4440–4445.

[58] J. Marin, D. Ragsdale, and J. Surdu, A hybrid approach to the profile creation and
intrusion detection, in Proceedings of DARPA Information Survivability Conference
and Exposition, Anaheim, CA, 2001.

151

[59] K. G. Mehrotra, C. K. Mohan, and S. Ranka, Bounds on the number of samples
needed for neural learning, IEEE Transactions on Neural Networks, 2 (1991), pp. 548–
558.

[60] S. Meyn, Sequencing and routing in multiclass networks. Part I: Feedback regulation,
in Proceedings of the IEEE International Symposium on Information Theory, 2000,
pp. 4440–4445. To appear in SIAM J. Control and Optimization.

[61] V. Misra and W. Gong, A hierarchical model for teletraffic, in Proc. 37th IEEE
Conf. Decision and Control, vol. 2, Tampa FL, 1998, pp. 1674–1679.

[62] N. Miyoshi, Sensitivity estimation of the cell-delay in the leaky bucket traffic filter
with stationary gradual input, in Proceedings of the International Workshop on Discrete
Event Systems, WoDES’98, Cagliari, Italy, Aug 1998, pp. 190–195.

[63] B. Mohanty and C. Cassandras, The effect of model uncertainty on some optimal
routing problems, Journal of Optimization Theory and Applications, 77 (1993), pp. 257–
290.

[64] D. Nicol, M. Goldsby, and M. Johnson, Fluid-based simulation of communica-
tion networks using SSF, in Proceedings 1999 European Simulation Multiconference,
October 1999.

[65] http://www.cc.gatech.edu/computing/compass/pdns/index.html.

[66] C. Panayiotou, C. Cassandras, and W.-B. Gong, Model abstraction for discrete
event systems using neural networks and sensitivity information, in Proceedings of the
Winter Simulation Conference, Dec. 2000, pp. 335–341.

[67] C. G. Panayiotou and C. G. Cassandras, Optimization of kanban-based manu-
facturing systems, Automatica, 35 (1999), pp. 1521–1533.

[68] R. Parker and R. Rardin, Discrete Optimization, Academic Press, Inc, Boston,
1988.

[69] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech
recognition, Proceedings of IEEE, 77 (1989), pp. 267–293.

[70] M. I. Reis dos Santos and A. M. O. Porta Nova, The main issues in nonlinear
simulation metamodel estimation, in Proceedings of the Winter Simulation Conference,
Dec 1999, pp. 502–509.

[71] R. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization by the Score Function Method, John Wiley and Sons, New
York, New York, 1993.

[72] A. Seleznyov and S. Puuronen, Anomaly intrusion detection systems: Handling
temporal relations between events. Recent Advances in Intrusion Detection (RAID’99),
1999.

152

[73] L. Shi and S. Olafsson, Nested partitions method for global optimization, Operations
Research, 48 (2000), pp. 390–407.

[74] http://www.ssfnet.org.

[75] H. Takahashi and H. Gu, A tight bound on concept learning, IEEE Transactions on
Neural Networks, 9 (1998), pp. 1191–1202.

[76] U.S. Army Concept Analysis Agency, Concept Evaluation Model, 1983.

[77] Y. Wardi and B. Melamed, IPA gradient estimation for the loss volume in contin-
uous flow models, in Proceedings of the International Workshop on New Directions of
Control and Manufacturing, Hong Kong, Nov 1994, pp. 30–33.

[78] , Continuous flow models: Modeling, simulation and continuity properties, in Pro-
ceedings of the 38th IEEE Conference On Decision and Control, Phoenix, Arizona,
Dec 7-10 1999, pp. 34–39.

[79] , Loss volume in continuous flow models: Fast simulation and sensitivity analysis
via IPA, in Proceedings of the 8-th IEEE Mediterranean Conference on Control and
Automation (MED 2000), Patras, Greece, Jul 17-19 2000.

[80] , Variational bounds and sensitivity analysis of traffic processes in continuous
flow models, Discrete Event Dynamic Systems: Theory and Applications, 11 (2001),
pp. 249–282.

[81] C. Warrender, S. Forrest, and B. A. Pearlmutter, Detecting intrusions using
system calls: Alternative data models, in IEEE Symposium on Security and Privacy,
1999, pp. 133–145.

[82] J. Wieselthier, C. Barnhart, and A. Ephremides, Standard clock simulation
and ordinal optimization applied to admission control in integrated communication net-
works, Journal of Discrete Event Dynamic Systems, 5 (1995), pp. 243–279.

[83] E. Wong, Stochastic neural networks, Algorithmica, 6 (1991), pp. 466–478.

[84] Y. Wu and W. Gong, Time stepped simulation of queueing systems, in Proceedings
of SPIE, vol. 4367, April 2001, pp. 262–273.

[85] A. Yan, On Some Modeling Issues In High Speed Networks, PhD thesis, University of
Massachusetts Amherst, Amherst MA, February 1998.

[86] A. Yan and W. Gong, Fluid simulation for high-speed networks with flow-based
routing, IEEE Transactions on Information Theory, 45 (1999), pp. 1588–1599.

[87] D. Yan and H. Mukai, Stochastic discrete optimization, SIAM Journal on Control
and Optimization, 30 (1992), pp. 549–612.

[88] M. A. Zeimer and J. Tew, Metamodel applications using TERSM, in Proceedings
of the 1995 Winter Simulation Conference, Dec. 1995, pp. 1421–1428.

153

